These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 24313500)

  • 1. Kinetic constraints, hierarchical relaxation, and onset of glassiness in strongly interacting and dissipative Rydberg gases.
    Lesanovsky I; Garrahan JP
    Phys Rev Lett; 2013 Nov; 111(21):215305. PubMed ID: 24313500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Out-of-equilibrium evolution of kinetically constrained many-body quantum systems under purely dissipative dynamics.
    Olmos B; Lesanovsky I; Garrahan JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042147. PubMed ID: 25375478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical swap dynamics, shortcuts to relaxation, and entropy production in dissipative Rydberg gases.
    Gutiérrez R; Garrahan JP; Lesanovsky I
    Phys Rev E; 2019 Jul; 100(1-1):012110. PubMed ID: 31499791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facilitated spin models of dissipative quantum glasses.
    Olmos B; Lesanovsky I; Garrahan JP
    Phys Rev Lett; 2012 Jul; 109(2):020403. PubMed ID: 23030133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Many-Body Radiative Decay in Strongly Interacting Rydberg Ensembles.
    Nill C; Brandner K; Olmos B; Carollo F; Lesanovsky I
    Phys Rev Lett; 2022 Dec; 129(24):243202. PubMed ID: 36563275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal nonequilibrium properties of dissipative Rydberg gases.
    Marcuzzi M; Levi E; Diehl S; Garrahan JP; Lesanovsky I
    Phys Rev Lett; 2014 Nov; 113(21):210401. PubMed ID: 25479477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Storage Enhanced Nonlinearities in a Cold Atomic Rydberg Ensemble.
    Distante E; Padrón-Brito A; Cristiani M; Paredes-Barato D; de Riedmatten H
    Phys Rev Lett; 2016 Sep; 117(11):113001. PubMed ID: 27661683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strongly Correlated Growth of Rydberg Aggregates in a Vapor Cell.
    Urvoy A; Ripka F; Lesanovsky I; Booth D; Shaffer JP; Pfau T; Löw R
    Phys Rev Lett; 2015 May; 114(20):203002. PubMed ID: 26047226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermionic collective excitations in a lattice gas of Rydberg atoms.
    Olmos B; González-Férez R; Lesanovsky I
    Phys Rev Lett; 2009 Oct; 103(18):185302. PubMed ID: 19905810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetically induced transparency of interacting Rydberg atoms with two-body dephasing.
    Yan D; Wang B; Bai Z; Li W
    Opt Express; 2020 Mar; 28(7):9677-9689. PubMed ID: 32225570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strongly interacting Rydberg excitations of a cold atomic gas.
    Dudin YO; Kuzmich A
    Science; 2012 May; 336(6083):887-9. PubMed ID: 22517325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Driven-Dissipative Rydberg Blockade in Optical Lattices.
    Kazemi J; Weimer H
    Phys Rev Lett; 2023 Apr; 130(16):163601. PubMed ID: 37154665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full counting statistics and phase diagram of a dissipative Rydberg gas.
    Malossi N; Valado MM; Scotto S; Huillery P; Pillet P; Ciampini D; Arimondo E; Morsch O
    Phys Rev Lett; 2014 Jul; 113(2):023006. PubMed ID: 25062177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-similar nonequilibrium dynamics of a many-body system with power-law interactions.
    Gutiérrez R; Garrahan JP; Lesanovsky I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062144. PubMed ID: 26764669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous avalanche ionization of a strongly blockaded Rydberg gas.
    Robert-de-Saint-Vincent M; Hofmann CS; Schempp H; Günter G; Whitlock S; Weidemüller M
    Phys Rev Lett; 2013 Jan; 110(4):045004. PubMed ID: 25166173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonadiabatic motional effects and dissipative blockade for Rydberg atoms excited from optical lattices or microtraps.
    Li W; Ates C; Lesanovsky I
    Phys Rev Lett; 2013 May; 110(21):213005. PubMed ID: 23745868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-stage melting in systems of strongly interacting Rydberg atoms.
    Weimer H; Büchler HP
    Phys Rev Lett; 2010 Dec; 105(23):230403. PubMed ID: 21231432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wireless network control of interacting Rydberg atoms.
    Sanders J; van Bijnen R; Vredenbregt E; Kokkelmans S
    Phys Rev Lett; 2014 Apr; 112(16):163001. PubMed ID: 24815645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum critical behavior in strongly interacting Rydberg gases.
    Weimer H; Löw R; Pfau T; Büchler HP
    Phys Rev Lett; 2008 Dec; 101(25):250601. PubMed ID: 19113686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dipole-dipole excitation and ionization in an ultracold gas of Rydberg atoms.
    Li W; Tanner PJ; Gallagher TF
    Phys Rev Lett; 2005 May; 94(17):173001. PubMed ID: 15904284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.