These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24313773)

  • 41. Utilizing metabolomics to distinguish asthma phenotypes: strategies and clinical implications.
    Reisdorph N; Wechsler ME
    Allergy; 2013 Aug; 68(8):959-62. PubMed ID: 23968382
    [No Abstract]   [Full Text] [Related]  

  • 42. A description of large-scale metabolomics studies: increasing value by combining metabolomics with genome-wide SNP genotyping and transcriptional profiling.
    Homuth G; Teumer A; Völker U; Nauck M
    J Endocrinol; 2012 Oct; 215(1):17-28. PubMed ID: 22782382
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Revisiting the role of exhaled nitric oxide in asthma.
    Ricciardolo FL
    Curr Opin Pulm Med; 2014 Jan; 20(1):53-9. PubMed ID: 24275926
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exhaled nitric oxide and exhaled breath condensate pH as predictors of sputum cell counts in optimally treated asthmatic smokers.
    Hillas G; Kostikas K; Mantzouranis K; Bessa V; Kontogianni K; Papadaki G; Papiris S; Alchanatis M; Loukides S; Bakakos P
    Respirology; 2011 Jul; 16(5):811-8. PubMed ID: 21545371
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolomics of exhaled breath condensate: a means for phenotyping respiratory diseases?
    Maniscalco M; Motta A
    Biomark Med; 2017 May; 11(6):405-407. PubMed ID: 28617073
    [No Abstract]   [Full Text] [Related]  

  • 46. Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples.
    Baines KJ; Simpson JL; Wood LG; Scott RJ; Gibson PG
    J Allergy Clin Immunol; 2011 Jan; 127(1):153-60, 160.e1-9. PubMed ID: 21211650
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of corticosteroids on noninvasive biomarkers of inflammation in asthma and chronic obstructive pulmonary disease.
    Kharitonov SA; Barnes PJ
    Proc Am Thorac Soc; 2004; 1(3):191-9. PubMed ID: 16113434
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma.
    Fens N; Zwinderman AH; van der Schee MP; de Nijs SB; Dijkers E; Roldaan AC; Cheung D; Bel EH; Sterk PJ
    Am J Respir Crit Care Med; 2009 Dec; 180(11):1076-82. PubMed ID: 19713445
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Asthma severity in childhood and metabolomic profiling of breath condensate.
    Carraro S; Giordano G; Reniero F; Carpi D; Stocchero M; Sterk PJ; Baraldi E
    Allergy; 2013 Jan; 68(1):110-7. PubMed ID: 23157191
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integration of 'omics' data: does it lead to new insights into host-microbe interactions?
    Kint G; Fierro C; Marchal K; Vanderleyden J; De Keersmaecker SC
    Future Microbiol; 2010 Feb; 5(2):313-28. PubMed ID: 20143952
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exhaled nitric oxide in pediatrics: what is new for practice purposes and clinical research in children?
    Piacentini GL; Cattazzo E; Tezza G; Peroni DG
    J Breath Res; 2012 Jun; 6(2):027103. PubMed ID: 22523000
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolomics applied to exhaled breath condensate in childhood asthma.
    Carraro S; Rezzi S; Reniero F; Héberger K; Giordano G; Zanconato S; Guillou C; Baraldi E
    Am J Respir Crit Care Med; 2007 May; 175(10):986-90. PubMed ID: 17303796
    [TBL] [Abstract][Full Text] [Related]  

  • 53. What did we learn from multiple omics studies in asthma?
    Ivanova O; Richards LB; Vijverberg SJ; Neerincx AH; Sinha A; Sterk PJ; Maitland-van der Zee AH
    Allergy; 2019 Nov; 74(11):2129-2145. PubMed ID: 31004501
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [OMICS and biomarkers of glial tumors].
    Idbaih A
    Rev Neurol (Paris); 2011 Oct; 167(10):691-8. PubMed ID: 21889780
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomarkers: unrealized potential in sports doping analysis.
    Teale P; Barton C; Driver PM; Kay RG
    Bioanalysis; 2009 Sep; 1(6):1103-18. PubMed ID: 21083078
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Future clinical implications emerging from recent genome-wide expression studies in asthma.
    Bérubé JC; Bossé Y
    Expert Rev Clin Immunol; 2014 Aug; 10(8):985-1004. PubMed ID: 25001610
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Leveraging -omics for asthma endotyping.
    Tyler SR; Bunyavanich S
    J Allergy Clin Immunol; 2019 Jul; 144(1):13-23. PubMed ID: 31277743
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolomics: a global biochemical approach to the study of central nervous system diseases.
    Kaddurah-Daouk R; Krishnan KR
    Neuropsychopharmacology; 2009 Jan; 34(1):173-86. PubMed ID: 18843269
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting steroid responsiveness in patients with asthma using exhaled breath profiling.
    van der Schee MP; Palmay R; Cowan JO; Taylor DR
    Clin Exp Allergy; 2013 Nov; 43(11):1217-25. PubMed ID: 24152154
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exhaled nitric oxide in 4-year-old children: relationship with asthma and atopy.
    Brussee JE; Smit HA; Kerkhof M; Koopman LP; Wijga AH; Postma DS; Gerritsen J; Grobbee DE; Brunekreef B; de Jongste JC
    Eur Respir J; 2005 Mar; 25(3):455-61. PubMed ID: 15738288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.