These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24313846)

  • 1. Carboxylation with CO2 via Brook rearrangement: preparation of α-hydroxy acid derivatives.
    Mita T; Higuchi Y; Sato Y
    Org Lett; 2014 Jan; 16(1):14-7. PubMed ID: 24313846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile procedure for generating side chain functionalized poly(alpha-hydroxy acid) copolymers from aldehydes via a versatile Passerini-type condensation.
    Rubinshtein M; James CR; Young JL; Ma YJ; Kobayashi Y; Gianneschi NC; Yang J
    Org Lett; 2010 Aug; 12(15):3560-3. PubMed ID: 20608664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient conversion of carboxylic acids to one-carbon degraded aldehydes via 2-hydroperoxy acids.
    Akakabe Y; Nyuugaku T
    Biosci Biotechnol Biochem; 2007 May; 71(5):1370-1. PubMed ID: 17485826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation and tandem reactions of 1-alkenyl-1,1-heterobimetallics: practical and versatile reagents for organic synthesis.
    Li H; Carroll PJ; Walsh PJ
    J Am Chem Soc; 2008 Mar; 130(11):3521-31. PubMed ID: 18302376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel-catalyzed carboxylation of aryl and vinyl chlorides employing carbon dioxide.
    Fujihara T; Nogi K; Xu T; Terao J; Tsuji Y
    J Am Chem Soc; 2012 Jun; 134(22):9106-9. PubMed ID: 22612592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhodium(I)-catalyzed carboxylation of aryl- and alkenylboronic esters with CO2.
    Ukai K; Aoki M; Takaya J; Iwasawa N
    J Am Chem Soc; 2006 Jul; 128(27):8706-7. PubMed ID: 16819845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of arylglycines from CO2 through α-amino organomanganese species.
    Mita T; Chen J; Sato Y
    Org Lett; 2014 Apr; 16(8):2200-3. PubMed ID: 24742161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of arylglycine and mandelic acid derivatives through carboxylations of α-amido and α-acetoxy stannanes with carbon dioxide.
    Mita T; Sugawara M; Hasegawa H; Sato Y
    J Org Chem; 2012 Mar; 77(5):2159-68. PubMed ID: 22288831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of tertiary alpha-hydroxy acids by silylene transfer to alpha-keto esters.
    Howard BE; Woerpel KA
    Org Lett; 2007 Oct; 9(22):4651-3. PubMed ID: 17910469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of aryl anti-vicinal diamines via aza-Brook rearrangement-initiated nucleophilic addition of α-silylamines to imines.
    Lin CY; Sun Z; Xu YJ; Lu CD
    J Org Chem; 2015 Apr; 80(7):3714-22. PubMed ID: 25756289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step synthesis of racemic α-amino acids from aldehydes, amine components, and gaseous CO2 by the aid of a bismetal reagent.
    Mita T; Higuchi Y; Sato Y
    Chemistry; 2013 Jan; 19(3):1123-8. PubMed ID: 23184625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive olefination of aldehydes via chromium Brook rearrangement.
    Baati R; Mioskowski C; Barma D; Kache R; Falck JR
    Org Lett; 2006 Jul; 8(14):2949-51. PubMed ID: 16805524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Pot Synthesis of α-Amino Acids through Carboxylation of Ammonium Ylides with CO2 Followed by Alkyl Migration.
    Mita T; Sugawara M; Sato Y
    J Org Chem; 2016 Jun; 81(12):5236-43. PubMed ID: 27223669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot synthesis of α-amino acids from CO2 using a bismetal reagent with Si-B bond.
    Mita T; Chen J; Sugawara M; Sato Y
    Org Lett; 2012 Dec; 14(24):6202-5. PubMed ID: 23205912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct carboxylation of arenes and halobenzenes with CO2 by the combined use of AlBr3 and R3SiCl.
    Nemoto K; Yoshida H; Egusa N; Morohashi N; Hattori T
    J Org Chem; 2010 Nov; 75(22):7855-62. PubMed ID: 21033692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1-alkoxyallene as an effective precursor for regio- and stereocontrolled allylation reactions with aliphatic aldehydes via bis-stannylation.
    Williams DR; Fultz MW
    J Am Chem Soc; 2005 Oct; 127(42):14550-1. PubMed ID: 16231889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic enantio- and diastereoselective aldol reactions of glycine-derived silicon enolate with aldehydes: an efficient approach to the asymmetric synthesis of anti-beta-hydroxy-alpha-amino acid derivatives.
    Kobayashi J; Nakamura M; Mori Y; Yamashita Y; Kobayashi S
    J Am Chem Soc; 2004 Aug; 126(30):9192-3. PubMed ID: 15281803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient synthesis of beta-hydroxy-alpha-amino acid derivatives via direct catalytic asymmetric aldol reaction of alpha-isothiocyanato imide with aldehydes.
    Chen X; Zhu Y; Qiao Z; Xie M; Lin L; Liu X; Feng X
    Chemistry; 2010 Sep; 16(33):10124-9. PubMed ID: 20645334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ni-catalyzed direct carboxylation of benzyl halides with CO2.
    León T; Correa A; Martin R
    J Am Chem Soc; 2013 Jan; 135(4):1221-4. PubMed ID: 23301781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double stereodifferentiation in the "acetate-type" aldol reaction with garner's aldehyde. Stereocontrolled synthesis of polyhydroxylated gamma-amino carbonyl compounds.
    Vicario JL; Rodriguez M; Badía D; Carrillo L; Reyes E
    Org Lett; 2004 Sep; 6(18):3171-4. PubMed ID: 15330615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.