BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 24313874)

  • 21. Oxidation of a single active site suffices for the functional inactivation of the dimeric Bacillus subtilis OhrR repressor in vitro.
    Eiamphungporn W; Soonsanga S; Lee JW; Helmann JD
    Nucleic Acids Res; 2009 Mar; 37(4):1174-81. PubMed ID: 19129220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The redox-sensing regulator YodB senses quinones and diamide via a thiol-disulfide switch in Bacillus subtilis.
    Chi BK; Albrecht D; Gronau K; Becher D; Hecker M; Antelmann H
    Proteomics; 2010 Sep; 10(17):3155-64. PubMed ID: 20652907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein S-mycothiolation functions as redox-switch and thiol protection mechanism in Corynebacterium glutamicum under hypochlorite stress.
    Chi BK; Busche T; Van Laer K; Bäsell K; Becher D; Clermont L; Seibold GM; Persicke M; Kalinowski J; Messens J; Antelmann H
    Antioxid Redox Signal; 2014 Feb; 20(4):589-605. PubMed ID: 23886307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox regulation by reversible protein S-thiolation in Gram-positive bacteria.
    Imber M; Pietrzyk-Brzezinska AJ; Antelmann H
    Redox Biol; 2019 Jan; 20():130-145. PubMed ID: 30308476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biophysical features of bacillithiol, the glutathione surrogate of Bacillus subtilis and other firmicutes.
    Sharma SV; Arbach M; Roberts AA; Macdonald CJ; Groom M; Hamilton CJ
    Chembiochem; 2013 Nov; 14(16):2160-8. PubMed ID: 24115506
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stress.
    Panmanee W; Vattanaviboon P; Poole LB; Mongkolsuk S
    J Bacteriol; 2006 Feb; 188(4):1389-95. PubMed ID: 16452421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative.
    Fuangthong M; Helmann JD
    Proc Natl Acad Sci U S A; 2002 May; 99(10):6690-5. PubMed ID: 11983871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Critical Minireview: The Fate of tRNA
    Campos Guillen J; Jones GH; Saldaña Gutiérrez C; Hernández-Flores JL; Cruz Medina JA; Valenzuela Soto JH; Pacheco Hernández S; Romero Gómez S; Morales Tlalpan V
    Biomolecules; 2017 Jan; 7(1):. PubMed ID: 28117687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of the organic hydroperoxide response of Chromobacterium violaceum reveals that OhrR is a cys-based redox sensor regulated by thioredoxin.
    da Silva Neto JF; Negretto CC; Netto LE
    PLoS One; 2012; 7(10):e47090. PubMed ID: 23071722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacillithiol is a major buffer of the labile zinc pool in Bacillus subtilis.
    Ma Z; Chandrangsu P; Helmann TC; Romsang A; Gaballa A; Helmann JD
    Mol Microbiol; 2014 Nov; 94(4):756-70. PubMed ID: 25213752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mass spectrometric studies of Cu(I)-binding to the N-terminal domains of B. subtilis CopA and influence of bacillithiol.
    Kay KL; Hamilton CJ; Le Brun NE
    J Inorg Biochem; 2019 Jan; 190():24-30. PubMed ID: 30342352
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methylglyoxal resistance in Bacillus subtilis: contributions of bacillithiol-dependent and independent pathways.
    Chandrangsu P; Dusi R; Hamilton CJ; Helmann JD
    Mol Microbiol; 2014 Feb; 91(4):706-15. PubMed ID: 24330391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological Studies of
    Hiras J; Sharma SV; Raman V; Tinson RAJ; Arbach M; Rodrigues DF; Norambuena J; Hamilton CJ; Hanson TE
    mBio; 2018 Nov; 9(6):. PubMed ID: 30482829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. S-cysteinylation is a general mechanism for thiol protection of Bacillus subtilis proteins after oxidative stress.
    Hochgräfe F; Mostertz J; Pöther DC; Becher D; Helmann JD; Hecker M
    J Biol Chem; 2007 Sep; 282(36):25981-5. PubMed ID: 17611193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli.
    Hondorp ER; Matthews RG
    PLoS Biol; 2004 Nov; 2(11):e336. PubMed ID: 15502870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family.
    Hong M; Fuangthong M; Helmann JD; Brennan RG
    Mol Cell; 2005 Oct; 20(1):131-41. PubMed ID: 16209951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. OhrRA functions as a redox-responsive system controlling toxinogenesis in Bacillus cereus.
    Clair G; Lorphelin A; Armengaud J; Duport C
    J Proteomics; 2013 Dec; 94():527-39. PubMed ID: 24184231
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Disulfide Stress Response and Protein
    Chi BK; Huyen NTT; Loi VV; Gruhlke MCH; Schaffer M; Mäder U; Maaß S; Becher D; Bernhardt J; Arbach M; Hamilton CJ; Slusarenko AJ; Antelmann H
    Antioxidants (Basel); 2019 Nov; 8(12):. PubMed ID: 31795512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Bacillus subtilis YkuV is a thiol:disulfide oxidoreductase revealed by its redox structures and activity.
    Zhang X; Hu Y; Guo X; Lescop E; Li Y; Xia B; Jin C
    J Biol Chem; 2006 Mar; 281(12):8296-304. PubMed ID: 16418167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis.
    Fuangthong M; Atichartpongkul S; Mongkolsuk S; Helmann JD
    J Bacteriol; 2001 Jul; 183(14):4134-41. PubMed ID: 11418552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.