BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 24314075)

  • 1. Long-lived intracellular single-molecule fluorescence using electroporated molecules.
    Crawford R; Torella JP; Aigrain L; Plochowietz A; Gryte K; Uphoff S; Kapanidis AN
    Biophys J; 2013 Dec; 105(11):2439-50. PubMed ID: 24314075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internalization and observation of fluorescent biomolecules in living microorganisms via electroporation.
    Aigrain L; Sustarsic M; Crawford R; Plochowietz A; Kapanidis AN
    J Vis Exp; 2015 Feb; (96):. PubMed ID: 25741968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of organic fluorophores for in vivo FRET studies based on electroporated molecules.
    Plochowietz A; Crawford R; Kapanidis AN
    Phys Chem Chem Phys; 2014 Jul; 16(25):12688-94. PubMed ID: 24837080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized delivery of fluorescently labeled proteins in live bacteria using electroporation.
    Sustarsic M; Plochowietz A; Aigrain L; Yuzenkova Y; Zenkin N; Kapanidis A
    Histochem Cell Biol; 2014 Jul; 142(1):113-24. PubMed ID: 24696085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bleaching-resistant, Near-continuous Single-molecule Fluorescence and FRET Based on Fluorogenic and Transient DNA Binding.
    Kümmerlin M; Mazumder A; Kapanidis AN
    Chemphyschem; 2023 Jun; 24(12):e202300175. PubMed ID: 37043705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule imaging of electroporated dye-labelled CheY in live Escherichia coli.
    Di Paolo D; Afanzar O; Armitage JP; Berry RM
    Philos Trans R Soc Lond B Biol Sci; 2016 Nov; 371(1707):. PubMed ID: 27672145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging of Single Dye-Labeled Chemotaxis Proteins in Live Bacteria Using Electroporation.
    Di Paolo D; Berry RM
    Methods Mol Biol; 2018; 1729():233-246. PubMed ID: 29429095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules.
    Kapanidis AN; Lee NK; Laurence TA; Doose S; Margeat E; Weiss S
    Proc Natl Acad Sci U S A; 2004 Jun; 101(24):8936-41. PubMed ID: 15175430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caging and Photoactivation in Single-Molecule Förster Resonance Energy Transfer Experiments.
    Jazi AA; Ploetz E; Arizki M; Dhandayuthapani B; Waclawska I; Krämer R; Ziegler C; Cordes T
    Biochemistry; 2017 Apr; 56(14):2031-2041. PubMed ID: 28362086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid transfer of low copy-number episomal plasmids from Saccharomyces cerevisiae to Escherichia coli by electroporation.
    Gunn L; Nickoloff JA
    Mol Biotechnol; 1995 Apr; 3(2):79-84. PubMed ID: 7620979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-photostable DNA FluoroCubes: Mechanism of Photostability and Compatibility with FRET and Dark Quenching.
    Blanchard AT; Li Z; Duran EC; Scull CE; Hoff JD; Wright KR; Pan V; Walter NG
    Nano Lett; 2022 Aug; 22(15):6235-6244. PubMed ID: 35881934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flexible approach to the calculation of resonance energy transfer efficiency between multiple donors and acceptors in complex geometries.
    Corry B; Jayatilaka D; Rigby P
    Biophys J; 2005 Dec; 89(6):3822-36. PubMed ID: 16199497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of dark quencher chromophores as nonfluorescent acceptors for single-molecule FRET.
    Le Reste L; Hohlbein J; Gryte K; Kapanidis AN
    Biophys J; 2012 Jun; 102(11):2658-68. PubMed ID: 22713582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing protein dynamics by photobleaching techniques.
    van Drogen F; Peter M
    Methods Mol Biol; 2004; 284():287-306. PubMed ID: 15173624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence quenching and kinetic studies of conformational changes induced by DNA and cAMP binding to cAMP receptor protein from Escherichia coli.
    Tworzydło M; Polit A; Mikołajczak J; Wasylewski Z
    FEBS J; 2005 Mar; 272(5):1103-16. PubMed ID: 15720385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vivo Single-Molecule Imaging in Yeast: Applications and Challenges.
    Podh NK; Paliwal S; Dey P; Das A; Morjaria S; Mehta G
    J Mol Biol; 2021 Nov; 433(22):167250. PubMed ID: 34537238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking single particles for hours via continuous DNA-mediated fluorophore exchange.
    Stehr F; Stein J; Bauer J; Niederauer C; Jungmann R; Ganzinger K; Schwille P
    Nat Commun; 2021 Jul; 12(1):4432. PubMed ID: 34290254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-resolution Imaging of Live Bacteria Cells Using a Genetically Directed, Highly Photostable Fluoromodule.
    Saurabh S; Perez AM; Comerci CJ; Shapiro L; Moerner WE
    J Am Chem Soc; 2016 Aug; 138(33):10398-401. PubMed ID: 27479076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Labeling proteins for single-molecule FRET.
    Joo C; Ha T
    Cold Spring Harb Protoc; 2012 Sep; 2012(9):1009-12. PubMed ID: 22949718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.