These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 24314086)
1. How DNA polymerase X preferentially accommodates incoming dATP opposite 8-oxoguanine on the template. Sampoli Benítez B; Barbati ZR; Arora K; Bogdanovic J; Schlick T Biophys J; 2013 Dec; 105(11):2559-68. PubMed ID: 24314086 [TBL] [Abstract][Full Text] [Related]
2. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation. Sampoli Benítez BA; Arora K; Balistreri L; Schlick T J Mol Biol; 2008 Dec; 384(5):1086-97. PubMed ID: 18955064 [TBL] [Abstract][Full Text] [Related]
3. Distinct energetics and closing pathways for DNA polymerase beta with 8-oxoG template and different incoming nucleotides. Wang Y; Schlick T BMC Struct Biol; 2007 Feb; 7():7. PubMed ID: 17313689 [TBL] [Abstract][Full Text] [Related]
4. Differing conformational pathways before and after chemistry for insertion of dATP versus dCTP opposite 8-oxoG in DNA polymerase beta. Wang Y; Reddy S; Beard WA; Wilson SH; Schlick T Biophys J; 2007 May; 92(9):3063-70. PubMed ID: 17293403 [TBL] [Abstract][Full Text] [Related]
5. Substitution of Ala for Tyr567 in RB69 DNA polymerase allows dAMP to be inserted opposite 7,8-dihydro-8-oxoguanine . Beckman J; Wang M; Blaha G; Wang J; Konigsberg WH Biochemistry; 2010 May; 49(19):4116-25. PubMed ID: 20411947 [TBL] [Abstract][Full Text] [Related]
6. Kinetics, structure, and mechanism of 8-Oxo-7,8-dihydro-2'-deoxyguanosine bypass by human DNA polymerase η. Patra A; Nagy LD; Zhang Q; Su Y; Müller L; Guengerich FP; Egli M J Biol Chem; 2014 Jun; 289(24):16867-82. PubMed ID: 24759104 [TBL] [Abstract][Full Text] [Related]
7. Efficient and high fidelity incorporation of dCTP opposite 7,8-dihydro-8-oxodeoxyguanosine by Sulfolobus solfataricus DNA polymerase Dpo4. Zang H; Irimia A; Choi JY; Angel KC; Loukachevitch LV; Egli M; Guengerich FP J Biol Chem; 2006 Jan; 281(4):2358-72. PubMed ID: 16306039 [TBL] [Abstract][Full Text] [Related]
8. "Gate-keeper" residues and active-site rearrangements in DNA polymerase μ help discriminate non-cognate nucleotides. Li Y; Schlick T PLoS Comput Biol; 2013; 9(5):e1003074. PubMed ID: 23717197 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of efficient and accurate nucleotide incorporation opposite 7,8-dihydro-8-oxoguanine by Saccharomyces cerevisiae DNA polymerase eta. Carlson KD; Washington MT Mol Cell Biol; 2005 Mar; 25(6):2169-76. PubMed ID: 15743815 [TBL] [Abstract][Full Text] [Related]
10. DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion. Freudenthal BD; Beard WA; Wilson SH Nucleic Acids Res; 2013 Feb; 41(3):1848-58. PubMed ID: 23267011 [TBL] [Abstract][Full Text] [Related]
11. Structure of human DNA polymerase kappa inserting dATP opposite an 8-OxoG DNA lesion. Vasquez-Del Carpio R; Silverstein TD; Lone S; Swan MK; Choudhury JR; Johnson RE; Prakash S; Prakash L; Aggarwal AK PLoS One; 2009 Jun; 4(6):e5766. PubMed ID: 19492058 [TBL] [Abstract][Full Text] [Related]
12. Mismatch-induced conformational distortions in polymerase beta support an induced-fit mechanism for fidelity. Arora K; Beard WA; Wilson SH; Schlick T Biochemistry; 2005 Oct; 44(40):13328-41. PubMed ID: 16201758 [TBL] [Abstract][Full Text] [Related]
13. Structural and functional elucidation of the mechanism promoting error-prone synthesis by human DNA polymerase kappa opposite the 7,8-dihydro-8-oxo-2'-deoxyguanosine adduct. Irimia A; Eoff RL; Guengerich FP; Egli M J Biol Chem; 2009 Aug; 284(33):22467-22480. PubMed ID: 19542228 [TBL] [Abstract][Full Text] [Related]
14. Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics. Furge LL; Guengerich FP Biochemistry; 1997 May; 36(21):6475-87. PubMed ID: 9174365 [TBL] [Abstract][Full Text] [Related]
15. Evading the proofreading machinery of a replicative DNA polymerase: induction of a mutation by an environmental carcinogen. Perlow RA; Broyde S J Mol Biol; 2001 Jun; 309(2):519-36. PubMed ID: 11371169 [TBL] [Abstract][Full Text] [Related]
16. Binary complex crystal structure of DNA polymerase β reveals multiple conformations of the templating 8-oxoguanine lesion. Batra VK; Shock DD; Beard WA; McKenna CE; Wilson SH Proc Natl Acad Sci U S A; 2012 Jan; 109(1):113-8. PubMed ID: 22178760 [TBL] [Abstract][Full Text] [Related]
17. Effect of oxidatively damaged DNA on the active site preorganization during nucleotide incorporation in a high fidelity polymerase from Bacillus stearothermophilus. Venkatramani R; Radhakrishnan R Proteins; 2008 May; 71(3):1360-72. PubMed ID: 18058909 [TBL] [Abstract][Full Text] [Related]
18. Toward understanding the mutagenicity of an environmental carcinogen: structural insights into nucleotide incorporation preferences. Perlow RA; Broyde S J Mol Biol; 2002 Sep; 322(2):291-309. PubMed ID: 12217692 [TBL] [Abstract][Full Text] [Related]
19. Extending the understanding of mutagenicity: structural insights into primer-extension past a benzo[a]pyrene diol epoxide-DNA adduct. Perlow RA; Broyde S J Mol Biol; 2003 Apr; 327(4):797-818. PubMed ID: 12654264 [TBL] [Abstract][Full Text] [Related]
20. Formation of purine-purine mispairs by Sulfolobus solfataricus DNA polymerase IV. DeCarlo L; Gowda AS; Suo Z; Spratt TE Biochemistry; 2008 Aug; 47(31):8157-64. PubMed ID: 18616289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]