These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 24314205)
21. The role of mucin and oligosaccharides via cross-feeding activities by Bifidobacterium: A review. Luo Y; Xiao Y; Zhao J; Zhang H; Chen W; Zhai Q Int J Biol Macromol; 2021 Jan; 167():1329-1337. PubMed ID: 33202267 [TBL] [Abstract][Full Text] [Related]
22. Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture. Gibson GR; Wang X FEMS Microbiol Lett; 1994 May; 118(1-2):121-7. PubMed ID: 8013867 [TBL] [Abstract][Full Text] [Related]
23. Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Falony G; Vlachou A; Verbrugghe K; De Vuyst L Appl Environ Microbiol; 2006 Dec; 72(12):7835-41. PubMed ID: 17056678 [TBL] [Abstract][Full Text] [Related]
24. Inulin-type prebiotics--a review: part 1. Kelly G Altern Med Rev; 2008 Dec; 13(4):315-29. PubMed ID: 19152479 [TBL] [Abstract][Full Text] [Related]
25. Development of an ion-exchange chromatography method for monitoring the degradation of prebiotic arabinoxylan-oligosaccharides in a complex fermentation medium. Rivière A; Eeltink S; Pierlot C; Balzarini T; Moens F; Selak M; De Vuyst L Anal Chem; 2013 May; 85(10):4982-90. PubMed ID: 23541153 [TBL] [Abstract][Full Text] [Related]
26. Inulin Fermentation by Lactobacilli and Bifidobacteria from Dairy Calves. Zhu Y; Liu J; Lopez JM; Mills DA Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33008824 [TBL] [Abstract][Full Text] [Related]
27. Prebiotic effects of inulin and oligofructose. Kolida S; Tuohy K; Gibson GR Br J Nutr; 2002 May; 87 Suppl 2():S193-7. PubMed ID: 12088518 [TBL] [Abstract][Full Text] [Related]
28. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. van de Wiele T; Boon N; Possemiers S; Jacobs H; Verstraete W J Appl Microbiol; 2007 Feb; 102(2):452-60. PubMed ID: 17241351 [TBL] [Abstract][Full Text] [Related]
29. Selective carbohydrate utilization by lactobacilli and bifidobacteria. Watson D; O'Connell Motherway M; Schoterman MH; van Neerven RJ; Nauta A; van Sinderen D J Appl Microbiol; 2013 Apr; 114(4):1132-46. PubMed ID: 23240984 [TBL] [Abstract][Full Text] [Related]
30. Hydrolysis of oligofructoses by the recombinant beta-fructofuranosidase from Bifidobacterium lactis. Janer C; Rohr LM; Peláez C; Laloi M; Cleusix V; Requena T; Meile L Syst Appl Microbiol; 2004 May; 27(3):279-85. PubMed ID: 15214632 [TBL] [Abstract][Full Text] [Related]
31. Carbohydrate preference, acid tolerance and bile tolerance in five strains of Bifidobacterium. Vernazza CL; Gibson GR; Rastall RA J Appl Microbiol; 2006 Apr; 100(4):846-53. PubMed ID: 16553741 [TBL] [Abstract][Full Text] [Related]
32. Inulin and oligofructose as dietary fiber: a review of the evidence. Flamm G; Glinsmann W; Kritchevsky D; Prosky L; Roberfroid M Crit Rev Food Sci Nutr; 2001 Jul; 41(5):353-62. PubMed ID: 11497328 [TBL] [Abstract][Full Text] [Related]
33. Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. Wang X; Gibson GR J Appl Bacteriol; 1993 Oct; 75(4):373-80. PubMed ID: 8226394 [TBL] [Abstract][Full Text] [Related]
34. In Vitro Fermentation of caprine milk oligosaccharides by bifidobacteria isolated from breast-fed infants. Thum C; Roy NC; McNabb WC; Otter DE; Cookson AL Gut Microbes; 2015; 6(6):352-63. PubMed ID: 26587678 [TBL] [Abstract][Full Text] [Related]
35. The bifidogenic nature of chicory inulin and its hydrolysis products. Roberfroid MB; Van Loo JA; Gibson GR J Nutr; 1998 Jan; 128(1):11-9. PubMed ID: 9430596 [TBL] [Abstract][Full Text] [Related]
36. Short fractions of oligofructose are preferentially metabolized by Bifidobacterium animalis DN-173 010. Van der Meulen R; Avonts L; De Vuyst L Appl Environ Microbiol; 2004 Apr; 70(4):1923-30. PubMed ID: 15066781 [TBL] [Abstract][Full Text] [Related]
37. Fermentation of Chicory Fructo-Oligosaccharides and Native Inulin by Infant Fecal Microbiota Attenuates Pro-Inflammatory Responses in Immature Dendritic Cells in an Infant-Age-Dependent and Fructan-Specific Way. Logtenberg MJ; Akkerman R; An R; Hermes GDA; de Haan BJ; Faas MM; Zoetendal EG; Schols HA; de Vos P Mol Nutr Food Res; 2020 Jul; 64(13):e2000068. PubMed ID: 32420676 [TBL] [Abstract][Full Text] [Related]
38. Multiple Transporters and Glycoside Hydrolases Are Involved in Arabinoxylan-Derived Oligosaccharide Utilization in Bifidobacterium pseudocatenulatum. Saito Y; Shigehisa A; Watanabe Y; Tsukuda N; Moriyama-Ohara K; Hara T; Matsumoto S; Tsuji H; Matsuki T Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33036985 [TBL] [Abstract][Full Text] [Related]
39. Lactobacillus paracasei subsp. paracasei 8700:2 degrades inulin-type fructans exhibiting different degrees of polymerization. Makras L; Van Acker G; De Vuyst L Appl Environ Microbiol; 2005 Nov; 71(11):6531-7. PubMed ID: 16269678 [TBL] [Abstract][Full Text] [Related]
40. [Bifidobacteria and inulin-type fructans which stimulate their growth]. Jedrzejczak-Krzepkowska M; Bielecki S Postepy Biochem; 2011; 57(4):392-400. PubMed ID: 22568171 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]