These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 24314310)
1. Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin. Ucisik MH; Küpcü S; Schuster B; Sleytr UB J Nanobiotechnology; 2013 Dec; 11():37. PubMed ID: 24314310 [TBL] [Abstract][Full Text] [Related]
2. Delivery of curcumin within emulsome nanoparticles enhances the anti-cancer activity in androgen-dependent prostate cancer cell. Bolat ZB; Islek Z; Sahin F; Ucisik MH Mol Biol Rep; 2023 Mar; 50(3):2531-2543. PubMed ID: 36607480 [TBL] [Abstract][Full Text] [Related]
3. S-layer fusion protein as a tool functionalizing emulsomes and CurcuEmulsomes for antibody binding and targeting. Ucisik MH; Küpcü S; Breitwieser A; Gelbmann N; Schuster B; Sleytr UB Colloids Surf B Biointerfaces; 2015 Apr; 128():132-139. PubMed ID: 25734967 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Kim TH; Jiang HH; Youn YS; Park CW; Tak KK; Lee S; Kim H; Jon S; Chen X; Lee KC Int J Pharm; 2011 Jan; 403(1-2):285-91. PubMed ID: 21035530 [TBL] [Abstract][Full Text] [Related]
6. Pectin-decorated selenium nanoparticles as a nanocarrier of curcumin to achieve enhanced physicochemical and biological properties. Wu Y; Liu H; Li Z; Huang D; Nong L; Ning Z; Hu Z; Xu C; Yan JK IET Nanobiotechnol; 2019 Oct; 13(8):880-886. PubMed ID: 31625531 [TBL] [Abstract][Full Text] [Related]
7. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Doktorovova S; Souto EB; Silva AM Pharm Dev Technol; 2018 Jan; 23(1):96-105. PubMed ID: 28949267 [TBL] [Abstract][Full Text] [Related]
8. A novel diblock of copolymer of (monomethoxy poly [ethylene glycol]-oleate) with a small hydrophobic fraction to make stable micelles/polymersomes for curcumin delivery to cancer cells. Erfani-Moghadam V; Nomani A; Zamani M; Yazdani Y; Najafi F; Sadeghizadeh M Int J Nanomedicine; 2014; 9():5541-54. PubMed ID: 25489242 [TBL] [Abstract][Full Text] [Related]
9. High drug payload curcumin nanosuspensions stabilized by mPEG-DSPE and SPC: in vitro and in vivo evaluation. Hong J; Liu Y; Xiao Y; Yang X; Su W; Zhang M; Liao Y; Kuang H; Wang X Drug Deliv; 2017 Nov; 24(1):109-120. PubMed ID: 28155567 [TBL] [Abstract][Full Text] [Related]
10. Dextran based nanosized carrier for the controlled and targeted delivery of curcumin to liver cancer cells. Anirudhan TS; Binusreejayan Int J Biol Macromol; 2016 Jul; 88():222-35. PubMed ID: 27012895 [TBL] [Abstract][Full Text] [Related]
11. Curcumin-loaded galactosylated BSA nanoparticles as targeted drug delivery carriers inhibit hepatocellular carcinoma cell proliferation and migration. Huang Y; Hu L; Huang S; Xu W; Wan J; Wang D; Zheng G; Xia Z Int J Nanomedicine; 2018; 13():8309-8323. PubMed ID: 30584302 [TBL] [Abstract][Full Text] [Related]
12. Curcumin- and Piperine-Loaded Emulsomes as Combinational Treatment Approach Enhance the Anticancer Activity of Curcumin on HCT116 Colorectal Cancer Model. Bolat ZB; Islek Z; Demir BN; Yilmaz EN; Sahin F; Ucisik MH Front Bioeng Biotechnol; 2020; 8():50. PubMed ID: 32117930 [TBL] [Abstract][Full Text] [Related]
13. Neuroprotective Effects of Curcumin-Loaded Emulsomes in a Laser Axotomy-Induced CNS Injury Model. Yilmaz EN; Bay S; Ozturk G; Ucisik MH Int J Nanomedicine; 2020; 15():9211-9229. PubMed ID: 33244233 [TBL] [Abstract][Full Text] [Related]
14. Preparation and in-vitro/in-vivo evaluation of curcumin nanosuspension with solubility enhancement. Li X; Yuan H; Zhang C; Chen W; Cheng W; Chen X; Ye X J Pharm Pharmacol; 2016 Aug; 68(8):980-8. PubMed ID: 27283220 [TBL] [Abstract][Full Text] [Related]
15. Cost-effective alternative to nano-encapsulation: Amorphous curcumin-chitosan nanoparticle complex exhibiting high payload and supersaturation generation. Nguyen MH; Yu H; Kiew TY; Hadinoto K Eur J Pharm Biopharm; 2015 Oct; 96():1-10. PubMed ID: 26170159 [TBL] [Abstract][Full Text] [Related]
16. Curcuminoid-loaded poly(methyl methacrylate) nanoparticles for cancer therapy. Sahu A; Solanki P; Mitra S Int J Nanomedicine; 2018; 13(T-NANO 2014 Abstracts):101-105. PubMed ID: 29593406 [TBL] [Abstract][Full Text] [Related]
17. Preparation and evaluation of paclitaxel-loaded nanoparticle incorporated with galactose-carrying polymer for hepatocyte targeted delivery. Wang Y; Jiang G; Qiu T; Ding F Drug Dev Ind Pharm; 2012 Sep; 38(9):1039-46. PubMed ID: 22124381 [TBL] [Abstract][Full Text] [Related]
18. Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Physico-chemical characterization and evaluation in 2D and 3D in vitro models. Lübtow MM; Nelke LC; Seifert J; Kühnemundt J; Sahay G; Dandekar G; Nietzer SL; Luxenhofer R J Control Release; 2019 Jun; 303():162-180. PubMed ID: 30981815 [TBL] [Abstract][Full Text] [Related]
19. Emodin loaded solid lipid nanoparticles: preparation, characterization and antitumor activity studies. Wang S; Chen T; Chen R; Hu Y; Chen M; Wang Y Int J Pharm; 2012 Jul; 430(1-2):238-46. PubMed ID: 22465546 [TBL] [Abstract][Full Text] [Related]
20. Improving the anticancer activity of curcumin using nanocurcumin dispersion in water. Basniwal RK; Khosla R; Jain N Nutr Cancer; 2014; 66(6):1015-22. PubMed ID: 25068616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]