BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 24314397)

  • 1. Inhibition of serine and proline racemases by substrate-product analogues.
    Harty M; Nagar M; Atkinson L; Legay CM; Derksen DJ; Bearne SL
    Bioorg Med Chem Lett; 2014 Jan; 24(1):390-3. PubMed ID: 24314397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of glutamate racemase by substrate-product analogues.
    Pal M; Bearne SL
    Bioorg Med Chem Lett; 2014 Mar; 24(5):1432-6. PubMed ID: 24507924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potent inhibition of mandelate racemase by a fluorinated substrate-product analogue with a novel binding mode.
    Nagar M; Lietzan AD; St Maurice M; Bearne SL
    Biochemistry; 2014 Feb; 53(7):1169-78. PubMed ID: 24472022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate-product analogue inhibitors of isoleucine 2-epimerase from Lactobacillus buchneri by rational design.
    Sorbara NT; MacMillan JWM; McCluskey GD; Bearne SL
    Org Biomol Chem; 2019 Sep; 17(37):8618-8627. PubMed ID: 31528932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of mandelate racemase by the substrate-intermediate-product analogue 1,1-diphenyl-1-hydroxymethylphosphonate.
    Burley RK; Bearne SL
    Bioorg Med Chem Lett; 2005 Oct; 15(19):4342-4. PubMed ID: 16039120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding the chemical space of human serine racemase inhibitors.
    Dellafiora L; Marchetti M; Spyrakis F; Orlandi V; Campanini B; Cruciani G; Cozzini P; Mozzarelli A
    Bioorg Med Chem Lett; 2015 Oct; 25(19):4297-303. PubMed ID: 26283510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potent dialkyl substrate-product analogue inhibitors and inactivators of α-methylacyl-coenzyme A racemase from Mycobacterium tuberculosis by rational design.
    Pal M; Easton NM; Yaphe H; Bearne SL
    Bioorg Chem; 2018 Apr; 77():640-650. PubMed ID: 29502025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Malonate-based inhibitors of mammalian serine racemase: kinetic characterization and structure-based computational study.
    Vorlová B; Nachtigallová D; Jirásková-Vaníčková J; Ajani H; Jansa P; Rezáč J; Fanfrlík J; Otyepka M; Hobza P; Konvalinka J; Lepšík M
    Eur J Med Chem; 2015 Jan; 89():189-97. PubMed ID: 25462239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new strategy to decrease N-methyl-D-aspartate (NMDA) receptor coactivation: inhibition of D-serine synthesis by converting serine racemase into an eliminase.
    Panizzutti R; De Miranda J; Ribeiro CS; Engelender S; Wolosker H
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5294-9. PubMed ID: 11309496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico and pharmacological screenings identify novel serine racemase inhibitors.
    Mori H; Wada R; Li J; Ishimoto T; Mizuguchi M; Obita T; Gouda H; Hirono S; Toyooka N
    Bioorg Med Chem Lett; 2014 Aug; 24(16):3732-5. PubMed ID: 25066953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence of pyridoxal 5'-phosphate-dependent serine racemase in silkworm, Bombyx mori.
    Uo T; Yoshimura T; Shimizu S; Esaki N
    Biochem Biophys Res Commun; 1998 May; 246(1):31-4. PubMed ID: 9600063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic mechanism and properties of pyridoxal 5'-phosphate independent racemases: how enzymes alter mismatched acidity and basicity.
    Fischer C; Ahn YC; Vederas JC
    Nat Prod Rep; 2019 Dec; 36(12):1687-1705. PubMed ID: 30994146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual substrate and reaction specificity in mouse serine racemase: identification of high-affinity dicarboxylate substrate and inhibitors and analysis of the beta-eliminase activity.
    Strísovský K; Jirásková J; Mikulová A; Rulísek L; Konvalinka J
    Biochemistry; 2005 Oct; 44(39):13091-100. PubMed ID: 16185077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serine racemase with catalytically active lysinoalanyl residue.
    Yamauchi T; Goto M; Wu HY; Uo T; Yoshimura T; Mihara H; Kurihara T; Miyahara I; Hirotsu K; Esaki N
    J Biochem; 2009 Apr; 145(4):421-4. PubMed ID: 19155267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design and synthesis of substrate-product analogue inhibitors of α-methylacyl-coenzyme A racemase from Mycobacterium tuberculosis.
    Pal M; Khanal M; Marko R; Thirumalairajan S; Bearne SL
    Chem Commun (Camb); 2016 Feb; 52(13):2740-3. PubMed ID: 26759836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclopropane derivatives as potential human serine racemase inhibitors: unveiling novel insights into a difficult target.
    Beato C; Pecchini C; Cocconcelli C; Campanini B; Marchetti M; Pieroni M; Mozzarelli A; Costantino G
    J Enzyme Inhib Med Chem; 2016 Aug; 31(4):645-52. PubMed ID: 26133542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. D-amino acids in the brain: the biochemistry of brain serine racemase.
    Baumgart F; Rodríguez-Crespo I
    FEBS J; 2008 Jul; 275(14):3538-45. PubMed ID: 18564178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and evaluation of substrate-product analog inhibitors for racemases and epimerases utilizing a 1,1-proton transfer mechanism.
    Bearne SL
    Methods Enzymol; 2023; 690():397-444. PubMed ID: 37858537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-amino acids in the brain: structure and function of pyridoxal phosphate-dependent amino acid racemases.
    Yoshimura T; Goto M
    FEBS J; 2008 Jul; 275(14):3527-37. PubMed ID: 18564179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human serine racemase structure/activity relationship studies provide mechanistic insight and point to position 84 as a hot spot for β-elimination function.
    Nelson DL; Applegate GA; Beio ML; Graham DL; Berkowitz DB
    J Biol Chem; 2017 Aug; 292(34):13986-14002. PubMed ID: 28696262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.