BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 24314502)

  • 1. Residues from low-order energetic materials: the comparative performance of a range of sampling approaches prior to analysis by ion chromatography.
    Szomborg K; Jongekrijg F; Gilchrist E; Webb T; Wood D; Barron L
    Forensic Sci Int; 2013 Dec; 233(1-3):55-62. PubMed ID: 24314502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of anionic energetic material residues in enhanced fingermarks on porous and non-porous surfaces using ion chromatography.
    Love C; Gilchrist E; Smith N; Barron L
    Forensic Sci Int; 2013 Sep; 231(1-3):150-6. PubMed ID: 23890630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of common swabbing materials for the recovery of organic and inorganic explosive residues.
    DeTata DA; Collins PA; McKinley AJ
    J Forensic Sci; 2013 May; 58(3):757-63. PubMed ID: 23458187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of different sampling media for their potential use as a combined swab for the collection of both organic and inorganic explosive residues.
    Song-im N; Benson S; Lennard C
    Forensic Sci Int; 2012 Oct; 222(1-3):102-10. PubMed ID: 22658743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishing a universal swabbing and clean-up protocol for the combined recovery of organic and inorganic explosive residues.
    Song-im N; Benson S; Lennard C
    Forensic Sci Int; 2012 Nov; 223(1-3):136-47. PubMed ID: 22959657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of gunshot residue from three ammunition types using suppressed anion exchange chromatography.
    Gilchrist E; Jongekrijg F; Harvey L; Smith N; Barron L
    Forensic Sci Int; 2012 Sep; 221(1-3):50-6. PubMed ID: 22502941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bomb swab: Can trace explosive particle sampling and detection be improved?
    Fisher D; Zach R; Matana Y; Elia P; Shustack S; Sharon Y; Zeiri Y
    Talanta; 2017 Nov; 174():92-99. PubMed ID: 28738664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development in the Detection and Identification of Explosive Residues.
    Beveridge AD
    Forensic Sci Rev; 1992 Jun; 4(1):17-49. PubMed ID: 26267286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of solvent extract cleanup procedures in the analysis of organic explosives.
    DeTata DA; Collins PA; McKinley AJ
    J Forensic Sci; 2013 Mar; 58(2):500-7. PubMed ID: 23278326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-sampling and analysis of TATP by swabbing and gas chromatography/mass spectrometry.
    Romolo FS; Cassioli L; Grossi S; Cinelli G; Russo MV
    Forensic Sci Int; 2013 Jan; 224(1-3):96-100. PubMed ID: 23219697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of interferers in sampling materials used in explosive residue analysis by ion chromatography.
    Mauricio FGM; Abritta VRM; de Lacerda Aquino R; Ambrósio JCL; Logrado LPL; Weber IT
    Forensic Sci Int; 2020 Feb; 307():109908. PubMed ID: 31855684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary ion mass spectrometry of powdered explosive compounds for forensic evidence analysis.
    Téllez H; Vadillo JM; Laserna JJ
    Rapid Commun Mass Spectrom; 2012 May; 26(10):1203-7. PubMed ID: 22499195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the efficiency of Isohelix™ and Rayon swabs for recovery of DNA from metal surfaces.
    Bonsu DOM; Higgins D; Henry J; Austin JJ
    Forensic Sci Med Pathol; 2021 Jun; 17(2):199-207. PubMed ID: 33180274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sampling of explosive residues: The use of a gelatine-based medium for the recovery of ammonium nitrate.
    Amaral MA; Yasin S; Gibson AP; Morgan RM
    Sci Justice; 2020 Nov; 60(6):531-537. PubMed ID: 33077036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass spectrometry detection and imaging of inorganic and organic explosive device signatures using desorption electro-flow focusing ionization.
    Forbes TP; Sisco E
    Anal Chem; 2014 Aug; 86(15):7788-97. PubMed ID: 24968206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel technique for the combined recovery, extraction and clean-up of forensic organic and inorganic trace explosives samples.
    Warren D; Hiley RW; Phillips SA; Ritchie K
    Sci Justice; 1999; 39(1):11-8. PubMed ID: 10750268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating TNT loss between sample collection and analysis.
    Nic Daeid N; Yu HA; Beardah MS
    Sci Justice; 2017 Mar; 57(2):95-100. PubMed ID: 28284444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery efficiencies of anthrax spores and ricin from nonporous or nonabsorbent and porous or absorbent surfaces by a variety of sampling methods*.
    Frawley DA; Samaan MN; Bull RL; Robertson JM; Mateczun AJ; Turnbull PC
    J Forensic Sci; 2008 Sep; 53(5):1102-7. PubMed ID: 18637873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Problems associated with traditional hygiene swabbing: the need for in-house standardization.
    Moore G; Griffith C
    J Appl Microbiol; 2007 Oct; 103(4):1090-103. PubMed ID: 17897214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective sampling and laser-induced breakdown spectroscopy (LIBS) analysis of organic explosive residues on polymer surfaces.
    Fernández-Bravo Á; Lucena P; Laserna JJ
    Appl Spectrosc; 2012 Oct; 66(10):1197-203. PubMed ID: 23031703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.