These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 24314597)

  • 1. Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds.
    Daniele MA; Adams AA; Naciri J; North SH; Ligler FS
    Biomaterials; 2014 Feb; 35(6):1845-56. PubMed ID: 24314597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An interpenetrating HA/G/CS biomimic hydrogel via Diels-Alder click chemistry for cartilage tissue engineering.
    Yu F; Cao X; Zeng L; Zhang Q; Chen X
    Carbohydr Polym; 2013 Aug; 97(1):188-95. PubMed ID: 23769536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels.
    Fu Y; Xu K; Zheng X; Giacomin AJ; Mix AW; Kao WJ
    Biomaterials; 2012 Jan; 33(1):48-58. PubMed ID: 21955690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering.
    Liu Y; Chan-Park MB
    Biomaterials; 2009 Jan; 30(2):196-207. PubMed ID: 18922573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds.
    Chan BK; Wippich CC; Wu CJ; Sivasankar PM; Schmidt G
    Macromol Biosci; 2012 Nov; 12(11):1490-501. PubMed ID: 23070957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture.
    Liu Y; Chan-Park MB
    Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks.
    Liang J; Guo Z; Timmerman A; Grijpma D; Poot A
    Biomed Mater; 2019 Jan; 14(2):024102. PubMed ID: 30524039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering.
    Tytgat L; Van Damme L; Van Hoorick J; Declercq H; Thienpont H; Ottevaere H; Blondeel P; Dubruel P; Van Vlierberghe S
    Acta Biomater; 2019 Aug; 94():340-350. PubMed ID: 31136829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks.
    Kutty JK; Cho E; Soo Lee J; Vyavahare NR; Webb K
    Biomaterials; 2007 Nov; 28(33):4928-38. PubMed ID: 17720239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ generation of cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching.
    Sokic S; Christenson M; Larson J; Papavasiliou G
    Macromol Biosci; 2014 May; 14(5):731-9. PubMed ID: 24443002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration.
    Zhang J; Wang J; Zhang H; Lin J; Ge Z; Zou X
    Biomed Mater; 2016 Jun; 11(3):035014. PubMed ID: 27305040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of poly(ethylene glycol): gelatin methacrylate composite nanostructures with tunable stiffness and degradation for vascular tissue engineering.
    Kim P; Yuan A; Nam KH; Jiao A; Kim DH
    Biofabrication; 2014 Jun; 6(2):024112. PubMed ID: 24717683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration.
    Gan Y; Li P; Wang L; Mo X; Song L; Xu Y; Zhao C; Ouyang B; Tu B; Luo L; Zhu L; Dong S; Li F; Zhou Q
    Biomaterials; 2017 Aug; 136():12-28. PubMed ID: 28505597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability.
    Billiet T; Gevaert E; De Schryver T; Cornelissen M; Dubruel P
    Biomaterials; 2014 Jan; 35(1):49-62. PubMed ID: 24112804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a Decellularized Multicomponent Extracellular Matrix Interpenetrating Network Scaffold by Gelatin Microporous Hydrogel 3D Cell Culture System.
    Shi J; Yao H; Wang B; Yang J; Liu D; Shang X; Chong H; Fei W; Wang DA
    Macromol Rapid Commun; 2024 Mar; 45(5):e2300508. PubMed ID: 38049086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanically tough biomacromolecular IPN hydrogel fibers by enzymatic and ionic crosslinking.
    Hu X; Lu L; Xu C; Li X
    Int J Biol Macromol; 2015 Jan; 72():403-9. PubMed ID: 25193098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering.
    Fares MM; Shirzaei Sani E; Portillo Lara R; Oliveira RB; Khademhosseini A; Annabi N
    Biomater Sci; 2018 Oct; 6(11):2938-2950. PubMed ID: 30246835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithelial cells.
    Truong VX; Hun ML; Li F; Chidgey AP; Forsythe JS
    Biomater Sci; 2016 Jul; 4(7):1123-31. PubMed ID: 27217071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical confinement via a PEG/Collagen interpenetrating network inhibits behavior characteristic of malignant cells in the triple negative breast cancer cell line MDA.MB.231.
    Reynolds DS; Bougher KM; Letendre JH; Fitzgerald SF; Gisladottir UO; Grinstaff MW; Zaman MH
    Acta Biomater; 2018 Sep; 77():85-95. PubMed ID: 30030173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells.
    Ramón-Azcón J; Ahadian S; Obregón R; Camci-Unal G; Ostrovidov S; Hosseini V; Kaji H; Ino K; Shiku H; Khademhosseini A; Matsue T
    Lab Chip; 2012 Aug; 12(16):2959-69. PubMed ID: 22773042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.