These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 24314639)
1. Modeling of the human rhinovirus C capsid suggests possible causes for antiviral drug resistance. Basta HA; Ashraf S; Sgro JY; Bochkov YA; Gern JE; Palmenberg AC Virology; 2014 Jan; 448():82-90. PubMed ID: 24314639 [TBL] [Abstract][Full Text] [Related]
2. Cryo-EM structure of pleconaril-resistant rhinovirus-B5 complexed to the antiviral OBR-5-340 reveals unexpected binding site. Wald J; Pasin M; Richter M; Walther C; Mathai N; Kirchmair J; Makarov VA; Goessweiner-Mohr N; Marlovits TC; Zanella I; Real-Hohn A; Verdaguer N; Blaas D; Schmidtke M Proc Natl Acad Sci U S A; 2019 Sep; 116(38):19109-19115. PubMed ID: 31462495 [TBL] [Abstract][Full Text] [Related]
3. VP1 sequencing of all human rhinovirus serotypes: insights into genus phylogeny and susceptibility to antiviral capsid-binding compounds. Ledford RM; Patel NR; Demenczuk TM; Watanyar A; Herbertz T; Collett MS; Pevear DC J Virol; 2004 Apr; 78(7):3663-74. PubMed ID: 15016887 [TBL] [Abstract][Full Text] [Related]
4. Modeling of the human rhinovirus C capsid suggests a novel topography with insights on receptor preference and immunogenicity. Basta HA; Sgro JY; Palmenberg AC Virology; 2014 Jan; 448():176-84. PubMed ID: 24314648 [TBL] [Abstract][Full Text] [Related]
7. Insights into the genetic basis for natural phenotypic resistance of human rhinoviruses to pleconaril. Ledford RM; Collett MS; Pevear DC Antiviral Res; 2005 Dec; 68(3):135-8. PubMed ID: 16199099 [TBL] [Abstract][Full Text] [Related]
8. Susceptibility of coxsackievirus B3 laboratory strains and clinical isolates to the capsid function inhibitor pleconaril: antiviral studies with virus chimeras demonstrate the crucial role of amino acid 1092 in treatment. Schmidtke M; Hammerschmidt E; Schüler S; Zell R; Birch-Hirschfeld E; Makarov VA; Riabova OB; Wutzler P J Antimicrob Chemother; 2005 Oct; 56(4):648-56. PubMed ID: 16150864 [TBL] [Abstract][Full Text] [Related]
9. A novel druggable interprotomer pocket in the capsid of rhino- and enteroviruses. Abdelnabi R; Geraets JA; Ma Y; Mirabelli C; Flatt JW; Domanska A; Delang L; Jochmans D; Kumar TA; Jayaprakash V; Sinha BN; Leyssen P; Butcher SJ; Neyts J PLoS Biol; 2019 Jun; 17(6):e3000281. PubMed ID: 31185007 [TBL] [Abstract][Full Text] [Related]
10. A novel benzonitrile analogue inhibits rhinovirus replication. Lacroix C; Querol-Audí J; Roche M; Franco D; Froeyen M; Guerra P; Terme T; Vanelle P; Verdaguer N; Neyts J; Leyssen P J Antimicrob Chemother; 2014 Oct; 69(10):2723-32. PubMed ID: 24948704 [TBL] [Abstract][Full Text] [Related]
11. The refined structure of human rhinovirus 16 at 2.15 A resolution: implications for the viral life cycle. Hadfield AT; Lee Wm; Zhao R; Oliveira MA; Minor I; Rueckert RR; Rossmann MG Structure; 1997 Mar; 5(3):427-41. PubMed ID: 9083115 [TBL] [Abstract][Full Text] [Related]
12. Molecular mechanism of rhinovirus escape from the Pyrazolo[3,4-d]pyrimidine capsid-binding inhibitor OBR-5-340 via mutations distant from the binding pocket: Derivatives that brake resistance. Richter M; Döring K; Blaas D; Riabova O; Khrenova M; Kazakova E; Egorova A; Makarov V; Schmidtke M Antiviral Res; 2024 Feb; 222():105810. PubMed ID: 38244889 [TBL] [Abstract][Full Text] [Related]
13. A novel basis of capsid stabilization by antiviral compounds. Phelps DK; Post CB J Mol Biol; 1995 Dec; 254(4):544-51. PubMed ID: 7500332 [TBL] [Abstract][Full Text] [Related]
14. Effect of lipophilicity modulation on inhibition of human rhinovirus capsid binders. Morley A; Tomkinson N; Cook A; MacDonald C; Weaver R; King S; Jenkinson L; Unitt J; McCrae C; Phillips T Bioorg Med Chem Lett; 2011 Oct; 21(20):6031-5. PubMed ID: 21907579 [TBL] [Abstract][Full Text] [Related]
15. Structure determination of antiviral compound SCH 38057 complexed with human rhinovirus 14. Zhang A; Nanni RG; Li T; Arnold GF; Oren DA; Jacobo-Molina A; Williams RL; Kamer G; Rubenstein DA; Li Y J Mol Biol; 1993 Apr; 230(3):857-67. PubMed ID: 8386772 [TBL] [Abstract][Full Text] [Related]
17. Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis. Shakeel S; Westerhuis BM; Domanska A; Koning RI; Matadeen R; Koster AJ; Bakker AQ; Beaumont T; Wolthers KC; Butcher SJ Nat Commun; 2016 Jul; 7():11387. PubMed ID: 27435188 [TBL] [Abstract][Full Text] [Related]
18. Human rhinovirus 14 complexed with fragments of active antiviral compounds. Bibler-Muckelbauer JK; Kremer MJ; Rossmann MG; Diana GD; Dutko FJ; Pevear DC; McKinlay MA Virology; 1994 Jul; 202(1):360-9. PubMed ID: 8009848 [TBL] [Abstract][Full Text] [Related]
19. Labeling of capsid proteins and genomic RNA of human rhinovirus with two different fluorescent dyes for selective detection by capillary electrophoresis. Kremser L; Petsch M; Blaas D; Kenndler E Anal Chem; 2004 Dec; 76(24):7360-5. PubMed ID: 15595880 [TBL] [Abstract][Full Text] [Related]
20. Molecular dynamics simulations of human rhinovirus and an antiviral compound. Speelman B; Brooks BR; Post CB Biophys J; 2001 Jan; 80(1):121-9. PubMed ID: 11159387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]