BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24315016)

  • 1. Evaluation of the 23S rRNA gene as target for qPCR based quantification of Frankia in soils.
    Samant S; Amann RI; Hahn D
    Syst Appl Microbiol; 2014 May; 37(3):229-34. PubMed ID: 24315016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sybr Green- and TaqMan-Based Quantitative PCR Approaches Allow Assessment of the Abundance and Relative Distribution of Frankia Clusters in Soils.
    Ben Tekaya S; Ganesan AS; Guerra T; Dawson JO; Forstner MRJ; Hahn D
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 27986724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frankia Diversity in Host Plant Root Nodules Is Independent of Abundance or Relative Diversity of Frankia Populations in Corresponding Rhizosphere Soils.
    Ben Tekaya S; Guerra T; Rodriguez D; Dawson JO; Hahn D
    Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29247058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abundance and Relative Distribution of Frankia Host Infection Groups Under Actinorhizal Alnus glutinosa and Non-actinorhizal Betula nigra Trees.
    Samant S; Huo T; Dawson JO; Hahn D
    Microb Ecol; 2016 Feb; 71(2):473-81. PubMed ID: 26143359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of frankiae in soils from five continents.
    Mirza BS; Welsh A; Rieder JP; Paschke MW; Hahn D
    Syst Appl Microbiol; 2009 Dec; 32(8):558-70. PubMed ID: 19692194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of frankiae in root nodules of Morella pensylvanica grown in soils from five continents.
    Welsh A; Mirza BS; Rieder JP; Paschke MW; Hahn D
    Syst Appl Microbiol; 2009 May; 32(3):201-10. PubMed ID: 19243909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of Frankia in soils using SYBR Green based qPCR.
    Samant S; Sha Q; Iyer A; Dhabekar P; Hahn D
    Syst Appl Microbiol; 2012 May; 35(3):191-7. PubMed ID: 22326815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of Frankia strains in leaf litter-amended soil and the rhizosphere of a nonactinorhizal plant.
    Mirza BS; Welsh A; Hahn D
    FEMS Microbiol Ecol; 2009 Oct; 70(1):132-41. PubMed ID: 19678845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frankia populations in soil and root nodules of sympatrically grown Alnus taxa.
    Pokharel A; Mirza BS; Dawson JO; Hahn D
    Microb Ecol; 2011 Jan; 61(1):92-100. PubMed ID: 20838787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of different Alnus taxa on abundance and diversity of introduced and indigenous Frankia in soils and root nodules.
    Vemulapally S; Guerra T; Hahn D
    FEMS Microbiol Ecol; 2022 Mar; 98(3):. PubMed ID: 35170731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in Frankia populations of the Elaeagnus host infection group in nodules of six host plant species after inoculation with soil.
    Mirza BS; Welsh A; Rasul G; Rieder JP; Paschke MW; Hahn D
    Microb Ecol; 2009 Aug; 58(2):384-93. PubMed ID: 19330550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth responses of indigenous Frankia populations to edaphic factors in actinorhizal rhizospheres.
    Samant SS; Dawson JO; Hahn D
    Syst Appl Microbiol; 2015 Oct; 38(7):501-5. PubMed ID: 26283319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular diversity of Frankia in root nodules of Alnus incana grown with inoculum from polluted urban soils.
    Ridgway KP; Marland LA; Harrison AF; Wright J; Young JP; Fitter AH
    FEMS Microbiol Ecol; 2004 Nov; 50(3):255-63. PubMed ID: 19712365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity of Frankia in soil assessed by Illumina sequencing of nifH gene fragments.
    Rodriguez D; Guerra TM; Forstner MR; Hahn D
    Syst Appl Microbiol; 2016 Sep; 39(6):391-7. PubMed ID: 27485903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of inoculation and leaf litter amendment on establishment of nodule-forming Frankia populations in soil.
    Nickel A; Pelz O; Hahn D; Saurer M; Siegwolf R; Zeyer J
    Appl Environ Microbiol; 2001 Jun; 67(6):2603-9. PubMed ID: 11375169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heteroduplex structures in 16S-23S rRNA intergenic transcribed spacer PCR products reveal ribosomal interoperonic polymorphisms within single Frankia strains.
    Gtari M; Brusetti L; Cherif A; Boudabous A; Daffonchio D
    J Appl Microbiol; 2007 Oct; 103(4):1031-40. PubMed ID: 17897207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saprophytic growth of inoculated Frankia sp. in soil microcosms.
    Mirza BS; Welsh A; Hahn D
    FEMS Microbiol Ecol; 2007 Dec; 62(3):280-9. PubMed ID: 17916077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of nitrogen content and its influence on actinorhizal nodule and rhizospheric microorganism diversity in three
    Yuan Y; Chen Z; Huang X; Wang F; Guo H; Huang Z; Yang H
    Front Microbiol; 2023; 14():1230170. PubMed ID: 38169791
    [No Abstract]   [Full Text] [Related]  

  • 19. Phylogeny of members of the Frankia genus based on gyrB, nifH and glnII sequences.
    Nouioui I; Ghodhbane-Gtari F; Beauchemin NJ; Tisa LS; Gtari M
    Antonie Van Leeuwenhoek; 2011 Nov; 100(4):579-87. PubMed ID: 21713368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia.
    Gtari M; Brusetti L; Skander G; Mora D; Boudabous A; Daffonchio D
    FEMS Microbiol Lett; 2004 May; 234(2):349-55. PubMed ID: 15135543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.