These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 24315123)
1. The universality of enzymatic rate-temperature dependency. Elias M; Wieczorek G; Rosenne S; Tawfik DS Trends Biochem Sci; 2014 Jan; 39(1):1-7. PubMed ID: 24315123 [TBL] [Abstract][Full Text] [Related]
2. Protein stability and enzyme activity at extreme biological temperatures. Feller G J Phys Condens Matter; 2010 Aug; 22(32):323101. PubMed ID: 21386475 [TBL] [Abstract][Full Text] [Related]
3. Substitutions of coenzyme-binding, nonpolar residues improve the low-temperature activity of thermophilic dehydrogenases. Hayashi S; Akanuma S; Onuki W; Tokunaga C; Yamagishi A Biochemistry; 2011 Oct; 50(40):8583-93. PubMed ID: 21894900 [TBL] [Abstract][Full Text] [Related]
4. Establishment of mesophilic-like catalytic properties in a thermophilic enzyme without affecting its thermal stability. Akanuma S; Bessho M; Kimura H; Furukawa R; Yokobori SI; Yamagishi A Sci Rep; 2019 Jun; 9(1):9346. PubMed ID: 31249343 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the first eukaryotic cold-adapted patatin-like phospholipase from the psychrophilic Euplotes focardii: Identification of putative determinants of thermal-adaptation by comparison with the homologous protein from the mesophilic Euplotes crassus. Yang G; De Santi C; de Pascale D; Pucciarelli S; Pucciarelli S; Miceli C Biochimie; 2013 Sep; 95(9):1795-806. PubMed ID: 23796575 [TBL] [Abstract][Full Text] [Related]
6. Some like it cold: biocatalysis at low temperatures. Georlette D; Blaise V; Collins T; D'Amico S; Gratia E; Hoyoux A; Marx JC; Sonan G; Feller G; Gerday C FEMS Microbiol Rev; 2004 Feb; 28(1):25-42. PubMed ID: 14975528 [TBL] [Abstract][Full Text] [Related]
7. Thermal stabilization of psychrophilic enzymes: a case study of the cold-active hormone-sensitive lipase from Psychrobacter sp. TA144. De Santi C; Durante L; Vecchio PD; Tutino ML; Parrilli E; de Pascale D Biotechnol Prog; 2012 Jul; 28(4):946-52. PubMed ID: 22718288 [TBL] [Abstract][Full Text] [Related]
10. Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. Georlette D; Damien B; Blaise V; Depiereux E; Uversky VN; Gerday C; Feller G J Biol Chem; 2003 Sep; 278(39):37015-23. PubMed ID: 12857762 [TBL] [Abstract][Full Text] [Related]
11. Eurythermalism and the temperature dependence of enzyme activity. Lee CK; Daniel RM; Shepherd C; Saul D; Cary SC; Danson MJ; Eisenthal R; Peterson ME FASEB J; 2007 Jun; 21(8):1934-41. PubMed ID: 17341686 [TBL] [Abstract][Full Text] [Related]
12. Structural features of thermozymes. Li WF; Zhou XX; Lu P Biotechnol Adv; 2005 Jun; 23(4):271-81. PubMed ID: 15848038 [TBL] [Abstract][Full Text] [Related]
13. Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes. Siddiqui KS Biotechnol Adv; 2015 Dec; 33(8):1912-22. PubMed ID: 26585268 [TBL] [Abstract][Full Text] [Related]
14. Directed evolution study of temperature adaptation in a psychrophilic enzyme. Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234 [TBL] [Abstract][Full Text] [Related]
15. Protein rigidity and thermophilic adaptation. Radestock S; Gohlke H Proteins; 2011 Apr; 79(4):1089-108. PubMed ID: 21246632 [TBL] [Abstract][Full Text] [Related]
16. Activity-stability relationships revisited in blue oxidases catalyzing electron transfer at extreme temperatures. Roulling F; Godin A; Cipolla A; Collins T; Miyazaki K; Feller G Extremophiles; 2016 Sep; 20(5):621-9. PubMed ID: 27315165 [TBL] [Abstract][Full Text] [Related]
17. Comparing the thermodynamic stabilities of a related thermophilic and mesophilic enzyme. Beadle BM; Baase WA; Wilson DB; Gilkes NR; Shoichet BK Biochemistry; 1999 Feb; 38(8):2570-6. PubMed ID: 10029552 [TBL] [Abstract][Full Text] [Related]
18. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity. Lam SY; Yeung RC; Yu TH; Sze KH; Wong KB PLoS Biol; 2011 Mar; 9(3):e1001027. PubMed ID: 21423654 [TBL] [Abstract][Full Text] [Related]
19. Thermostability in rubredoxin and its relationship to mechanical rigidity. Rader AJ Phys Biol; 2009 Dec; 7():16002. PubMed ID: 20009190 [TBL] [Abstract][Full Text] [Related]
20. Structural adaptation to low temperatures--analysis of the subunit interface of oligomeric psychrophilic enzymes. Tronelli D; Maugini E; Bossa F; Pascarella S FEBS J; 2007 Sep; 274(17):4595-608. PubMed ID: 17697122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]