These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 24315126)
1. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase. Poe DP; Veit D; Ranger M; Kaczmarski K; Tarafder A; Guiochon G J Chromatogr A; 2014 Jan; 1323():143-56. PubMed ID: 24315126 [TBL] [Abstract][Full Text] [Related]
2. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles. Poe DP; Veit D; Ranger M; Kaczmarski K; Tarafder A; Guiochon G J Chromatogr A; 2012 Aug; 1250():105-14. PubMed ID: 22521956 [TBL] [Abstract][Full Text] [Related]
3. Use of the isopycnic plots in designing operations of supercritical fluid chromatography. V. Pressure and density drops using mixtures of carbon dioxide and methanol as the mobile phase. Tarafder A; Kaczmarski K; Poe DP; Guiochon G J Chromatogr A; 2012 Oct; 1258():136-51. PubMed ID: 22935727 [TBL] [Abstract][Full Text] [Related]
4. Pressure, temperature and density drops along supercritical fluid chromatography columns. II. Theoretical simulation for neat carbon dioxide and columns packed with 3-μm particles. Kaczmarski K; Poe DP; Tarafder A; Guiochon G J Chromatogr A; 2012 Aug; 1250():115-23. PubMed ID: 22687711 [TBL] [Abstract][Full Text] [Related]
5. Efficiency of supercritical fluid chromatography columns in different thermal environments. Kaczmarski K; Poe DP; Tarafder A; Guiochon G J Chromatogr A; 2013 May; 1291():155-73. PubMed ID: 23598158 [TBL] [Abstract][Full Text] [Related]
6. Use of the isopycnic plots in designing operations of supercritical fluid chromatography: IV. Pressure and density drops along columns. Tarafder A; Kaczmarski K; Ranger M; Poe DP; Guiochon G J Chromatogr A; 2012 May; 1238():132-45. PubMed ID: 22503621 [TBL] [Abstract][Full Text] [Related]
7. Modelling of retention in analytical supercritical fluid chromatography for CO2-Methanol mobile phase. Leśko M; Poe DP; Kaczmarski K J Chromatogr A; 2013 Aug; 1305():285-92. PubMed ID: 23891374 [TBL] [Abstract][Full Text] [Related]
8. The Joule-Thomson coefficient as a criterion for efficient operating conditions in supercritical fluid chromatography. Poe DP; Helmueller S; Kobany S; Feldhacker H; Kaczmarski K J Chromatogr A; 2017 Jan; 1482():76-96. PubMed ID: 28043691 [TBL] [Abstract][Full Text] [Related]
9. Effect of methanol concentration on the speed-resolution properties in adiabatic supercritical fluid chromatography. Gritti F; Guiochon G J Chromatogr A; 2013 Nov; 1314():255-65. PubMed ID: 24055225 [TBL] [Abstract][Full Text] [Related]
10. Maximizing performance in supercritical fluid chromatography using low-density mobile phases. Gritti F; Fogwill M; Gilar M; Jarrell JA J Chromatogr A; 2016 Oct; 1468():217-227. PubMed ID: 27658377 [TBL] [Abstract][Full Text] [Related]
11. Effect of density on kinetic performance in supercritical fluid chromatography with methanol modified carbon dioxide. Berger TA J Chromatogr A; 2018 Aug; 1564():188-198. PubMed ID: 29929869 [TBL] [Abstract][Full Text] [Related]
12. Limit of the speed-resolution properties in adiabatic supercritical fluid chromatography. Gritti F; Guiochon G J Chromatogr A; 2013 Jun; 1295():114-27. PubMed ID: 23672980 [TBL] [Abstract][Full Text] [Related]
13. On axial temperature gradients due to large pressure drops in dense fluid chromatography. Colgate SO; Berger TA J Chromatogr A; 2015 Mar; 1385():94-102. PubMed ID: 25662064 [TBL] [Abstract][Full Text] [Related]
14. Characterizing pressure issues due to turbulent flow in tubing, in ultra-fast chiral supercritical fluid chromatography at up to 580bar. Berger TA J Chromatogr A; 2016 Dec; 1475():86-94. PubMed ID: 27837997 [TBL] [Abstract][Full Text] [Related]
15. Effect of the thermal environment on the efficiency of packed columns in supercritical fluid chromatography. Zauner J; Lusk R; Koski S; Poe DP J Chromatogr A; 2012 Nov; 1266():149-57. PubMed ID: 23107122 [TBL] [Abstract][Full Text] [Related]
16. The modeling of overloaded elution band profiles in supercritical fluid chromatography. Vajda P; Guiochon G J Chromatogr A; 2014 Mar; 1333():116-23. PubMed ID: 24529406 [TBL] [Abstract][Full Text] [Related]
17. Kinetic behaviour in supercritical fluid chromatography with modified mobile phase for 5 μm particle size. Part II: Effect of outlet pressure changes. Lesellier E; Fougere L J Chromatogr A; 2014 Dec; 1373():190-6. PubMed ID: 25464994 [TBL] [Abstract][Full Text] [Related]
18. Use of isopycnic plots in designing operations of supercritical fluid chromatography: I. The critical role of density in determining the characteristics of the mobile phase in supercritical fluid chromatography. Tarafder A; Guiochon G J Chromatogr A; 2011 Jul; 1218(28):4569-75. PubMed ID: 21652036 [TBL] [Abstract][Full Text] [Related]
19. Temperature effects in supercritical fluid chromatography: a trade-off between viscous heating and decompression cooling. De Pauw R; Choikhet K; Desmet G; Broeckhoven K J Chromatogr A; 2014 Oct; 1365():212-8. PubMed ID: 25262033 [TBL] [Abstract][Full Text] [Related]