BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

787 related articles for article (PubMed ID: 24315375)

  • 21. Murine neonatal ketogenesis preserves mitochondrial energetics by preventing protein hyperacetylation.
    Arima Y; Nakagawa Y; Takeo T; Ishida T; Yamada T; Hino S; Nakao M; Hanada S; Umemoto T; Suda T; Sakuma T; Yamamoto T; Watanabe T; Nagaoka K; Tanaka Y; Kawamura YK; Tonami K; Kurihara H; Sato Y; Yamagata K; Nakamura T; Araki S; Yamamoto E; Izumiya Y; Sakamoto K; Kaikita K; Matsushita K; Nishiyama K; Nakagata N; Tsujita K
    Nat Metab; 2021 Feb; 3(2):196-210. PubMed ID: 33619377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of ketone signaling in the hepatic response to fasting.
    Geisler CE; Ghimire S; Bogan RL; Renquist BJ
    Am J Physiol Gastrointest Liver Physiol; 2019 May; 316(5):G623-G631. PubMed ID: 30767679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deglutarylation of glutaryl-CoA dehydrogenase by deacylating enzyme SIRT5 promotes lysine oxidation in mice.
    Bhatt DP; Mills CA; Anderson KA; Henriques BJ; Lucas TG; Francisco S; Liu J; Ilkayeva OR; Adams AE; Kulkarni SR; Backos DS; Major MB; Grimsrud PA; Gomes CM; Hirschey MD
    J Biol Chem; 2022 Apr; 298(4):101723. PubMed ID: 35157847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human HMGCS2 regulates mitochondrial fatty acid oxidation and FGF21 expression in HepG2 cell line.
    Vilà-Brau A; De Sousa-Coelho AL; Mayordomo C; Haro D; Marrero PF
    J Biol Chem; 2011 Jun; 286(23):20423-30. PubMed ID: 21502324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Succinylome analysis reveals the involvement of lysine succinylation in metabolism in pathogenic Mycobacterium tuberculosis.
    Yang M; Wang Y; Chen Y; Cheng Z; Gu J; Deng J; Bi L; Chen C; Mo R; Wang X; Ge F
    Mol Cell Proteomics; 2015 Apr; 14(4):796-811. PubMed ID: 25605462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sirtuin 5 Regulates Proximal Tubule Fatty Acid Oxidation to Protect against AKI.
    Chiba T; Peasley KD; Cargill KR; Maringer KV; Bharathi SS; Mukherjee E; Zhang Y; Holtz A; Basisty N; Yagobian SD; Schilling B; Goetzman ES; Sims-Lucas S
    J Am Soc Nephrol; 2019 Dec; 30(12):2384-2398. PubMed ID: 31575700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation.
    Lombard DB; Alt FW; Cheng HL; Bunkenborg J; Streeper RS; Mostoslavsky R; Kim J; Yancopoulos G; Valenzuela D; Murphy A; Yang Y; Chen Y; Hirschey MD; Bronson RT; Haigis M; Guarente LP; Farese RV; Weissman S; Verdin E; Schwer B
    Mol Cell Biol; 2007 Dec; 27(24):8807-14. PubMed ID: 17923681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SIRT5 desuccinylates and activates SOD1 to eliminate ROS.
    Lin ZF; Xu HB; Wang JY; Lin Q; Ruan Z; Liu FB; Jin W; Huang HH; Chen X
    Biochem Biophys Res Commun; 2013 Nov; 441(1):191-5. PubMed ID: 24140062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SUCLA2 mutations cause global protein succinylation contributing to the pathomechanism of a hereditary mitochondrial disease.
    Gut P; Matilainen S; Meyer JG; Pällijeff P; Richard J; Carroll CJ; Euro L; Jackson CB; Isohanni P; Minassian BA; Alkhater RA; Østergaard E; Civiletto G; Parisi A; Thevenet J; Rardin MJ; He W; Nishida Y; Newman JC; Liu X; Christen S; Moco S; Locasale JW; Schilling B; Suomalainen A; Verdin E
    Nat Commun; 2020 Nov; 11(1):5927. PubMed ID: 33230181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis.
    Ma Y; Qi Y; Wang L; Zheng Z; Zhang Y; Zheng J
    Free Radic Biol Med; 2019 Apr; 134():458-467. PubMed ID: 30703481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a control enzyme in ketogenesis.
    Hegardt FG
    Biochem J; 1999 Mar; 338 ( Pt 3)(Pt 3):569-82. PubMed ID: 10051425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The enzyme activity of mitochondrial trifunctional protein is not altered by lysine acetylation or lysine succinylation.
    Zhang Y; Goetzman E
    PLoS One; 2021; 16(10):e0256619. PubMed ID: 34644302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the expression of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene. Its role in the control of ketogenesis.
    Casals N; Roca N; Guerrero M; Gil-Gómez G; Ayté J; Ciudad CJ; Hegardt FG
    Biochem J; 1992 Apr; 283 ( Pt 1)(Pt 1):261-4. PubMed ID: 1348927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial 3-hydroxymethylglutaryl-CoA synthase-2 (HMGCS2) deficiency: a rare case with bicytopenia and coagulopathy.
    El-Sayed D; El-Karaksy H; Wali Y; Youssry I
    BMJ Case Rep; 2023 Nov; 16(11):. PubMed ID: 37931961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology.
    Kumar S; Lombard DB
    Crit Rev Biochem Mol Biol; 2018 Jun; 53(3):311-334. PubMed ID: 29637793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Keratin 8 absence down-regulates colonocyte HMGCS2 and modulates colonic ketogenesis and energy metabolism.
    Helenius TO; Misiorek JO; Nyström JH; Fortelius LE; Habtezion A; Liao J; Asghar MN; Zhang H; Azhar S; Omary MB; Toivola DM
    Mol Biol Cell; 2015 Jun; 26(12):2298-310. PubMed ID: 25904331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Overexpression of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in transgenic mice causes hepatic hyperketogenesis.
    Valera A; Pelegrin M; Asins G; Fillat C; Sabater J; Pujol A; Hegardt FG; Bosch F
    J Biol Chem; 1994 Mar; 269(9):6267-70. PubMed ID: 7907092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle.
    Nakagawa T; Lomb DJ; Haigis MC; Guarente L
    Cell; 2009 May; 137(3):560-70. PubMed ID: 19410549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5.
    Tan M; Peng C; Anderson KA; Chhoy P; Xie Z; Dai L; Park J; Chen Y; Huang H; Zhang Y; Ro J; Wagner GR; Green MF; Madsen AS; Schmiesing J; Peterson BS; Xu G; Ilkayeva OR; Muehlbauer MJ; Braulke T; Mühlhausen C; Backos DS; Olsen CA; McGuire PJ; Pletcher SD; Lombard DB; Hirschey MD; Zhao Y
    Cell Metab; 2014 Apr; 19(4):605-17. PubMed ID: 24703693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Mitochondrial Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease Implications.
    Carrico C; Meyer JG; He W; Gibson BW; Verdin E
    Cell Metab; 2018 Mar; 27(3):497-512. PubMed ID: 29514063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 40.