BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24315397)

  • 21. Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography.
    Thomas A; Degenhardt F; Farrokh A; Wojcinski S; Slowinski T; Fischer T
    Acad Radiol; 2010 May; 17(5):558-63. PubMed ID: 20171905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Breast strain elastography: Observer variability in data acquisition and interpretation.
    Dong Y; Zhou C; Zhou J; Yang Z; Zhang J; Zhan W
    Eur J Radiol; 2018 Apr; 101():157-161. PubMed ID: 29571790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo real-time freehand palpation imaging.
    Hall TJ; Zhu Y; Spalding CS
    Ultrasound Med Biol; 2003 Mar; 29(3):427-35. PubMed ID: 12706194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 2-D locally regularized tissue strain estimation from radio-frequency ultrasound images: theoretical developments and results on experimental data.
    Brusseau E; Kybic J; Deprez JF; Basset O
    IEEE Trans Med Imaging; 2008 Feb; 27(2):145-60. PubMed ID: 18334437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating the usefulness of breast strain elastography for intraductal lesions.
    Kokubu Y; Yamada K; Tanabe M; Izumori A; Kato C; Horii R; Ohno S; Matsueda K
    J Med Ultrason (2001); 2021 Jan; 48(1):63-70. PubMed ID: 33389371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of cysts using differential correlation coefficient values from two dimensional breast elastography: preliminary study.
    Booi RC; Carson PL; O'Donnell M; Roubidoux MA; Hall AL; Rubin JM
    Ultrasound Med Biol; 2008 Jan; 34(1):12-21. PubMed ID: 17900795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative three-dimensional elasticity imaging from quasi-static deformation: a phantom study.
    Richards MS; Barbone PE; Oberai AA
    Phys Med Biol; 2009 Feb; 54(3):757-79. PubMed ID: 19131669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid algorithm for elastography to visualize both solid and fluid-filled lesions.
    Nahiyan A; Hasan MK
    Ultrasound Med Biol; 2015 Apr; 41(4):1058-78. PubMed ID: 25701523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computer-assisted assessment of ultrasound real-time elastography: initial experience in 145 breast lesions.
    Zhang X; Xiao Y; Zeng J; Qiu W; Qian M; Wang C; Zheng R; Zheng H
    Eur J Radiol; 2014 Jan; 83(1):e1-7. PubMed ID: 24148563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the SR
    Moon JH; Koh SH; Park SY; Hwang JY; Woo JY
    Acta Radiol; 2019 Jan; 60(1):28-34. PubMed ID: 29726693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differentiating between malignant and benign breast masses: factors limiting sonoelastographic strain ratio.
    Stachs A; Hartmann S; Stubert J; Dieterich M; Martin A; Kundt G; Reimer T; Gerber B
    Ultraschall Med; 2013 Apr; 34(2):131-6. PubMed ID: 23108926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sonographic breast elastography: a primer.
    Barr RG
    J Ultrasound Med; 2012 May; 31(5):773-83. PubMed ID: 22535725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accuracy of Tumor Sizing in Breast Cancer: A Comparison of Strain Elastography, 3-D Ultrasound and Conventional B-Mode Ultrasound with and without Compound Imaging.
    Stachs A; Pandjaitan A; Martin A; Stubert J; Hartmann S; Gerber B; Glass Ä
    Ultrasound Med Biol; 2016 Dec; 42(12):2758-2765. PubMed ID: 27600473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated 3-D Ultrasound Elastography of the Breast: An In Vivo Validation Study.
    Hendriks GAGM; Chen C; Mann R; Hansen HHG; de Korte CL
    Ultrasound Med Biol; 2024 Mar; 50(3):358-363. PubMed ID: 38103946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of precompression on elasticity imaging of the breast: development of a clinically useful semiquantitative method of precompression assessment.
    Barr RG; Zhang Z
    J Ultrasound Med; 2012 Jun; 31(6):895-902. PubMed ID: 22644686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustic radiation force impulse imaging with virtual touch tissue quantification: measurements of normal breast tissue and dependence on the degree of pre-compression.
    Wojcinski S; Brandhorst K; Sadigh G; Hillemanns P; Degenhardt F
    Ultrasound Med Biol; 2013 Dec; 39(12):2226-32. PubMed ID: 24035624
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A qualitative and quantitative assessment of simultaneous strain, shear wave, and point shear wave elastography to distinguish malignant and benign breast lesions.
    Altıntas Y; Bayrak M; Alabaz Ö; Celiktas M
    Acta Radiol; 2021 Sep; 62(9):1155-1162. PubMed ID: 33070635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Breast ultrasound elastography--results of 193 breast lesions in a prospective study with histopathologic correlation.
    Schaefer FK; Heer I; Schaefer PJ; Mundhenke C; Osterholz S; Order BM; Hofheinz N; Hedderich J; Heller M; Jonat W; Schreer I
    Eur J Radiol; 2011 Mar; 77(3):450-6. PubMed ID: 19773141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial Compounding Technique to Obtain Rotation Elastogram: A Feasibility Study.
    Kothawala A; Chandramoorthi S; Reddy NRK; Thittai AK
    Ultrasound Med Biol; 2017 Jun; 43(6):1290-1301. PubMed ID: 28433440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison and Combination of Strain and Shear Wave Elastography of Breast Masses for Differentiation of Benign and Malignant Lesions by Quantitative Assessment: Preliminary Study.
    Seo M; Ahn HS; Park SH; Lee JB; Choi BI; Sohn YM; Shin SY
    J Ultrasound Med; 2018 Jan; 37(1):99-109. PubMed ID: 28688156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.