These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24315576)

  • 1. Neo-innervation of a bioengineered intestinal smooth muscle construct around chitosan scaffold.
    Zakhem E; Raghavan S; Bitar KN
    Biomaterials; 2014 Feb; 35(6):1882-9. PubMed ID: 24315576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering.
    Zakhem E; Raghavan S; Gilmont RR; Bitar KN
    Biomaterials; 2012 Jun; 33(19):4810-7. PubMed ID: 22483012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Successful implantation of an engineered tubular neuromuscular tissue composed of human cells and chitosan scaffold.
    Zakhem E; Elbahrawy M; Orlando G; Bitar KN
    Surgery; 2015 Dec; 158(6):1598-608. PubMed ID: 26096562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enteric neural differentiation in innervated, physiologically functional, smooth muscle constructs is modulated by bone morphogenic protein 2 secreted by sphincteric smooth muscle cells.
    Rego SL; Raghavan S; Zakhem E; Bitar KN
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1251-1261. PubMed ID: 25926098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The appendix as a viable source of neural progenitor cells to functionally innervate bioengineered gastrointestinal smooth muscle tissues.
    Zakhem E; Rego SL; Raghavan S; Bitar KN
    Stem Cells Transl Med; 2015 Jun; 4(6):548-54. PubMed ID: 25873745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smooth muscle strips for intestinal tissue engineering.
    Walthers CM; Lee M; Wu BM; Dunn JC
    PLoS One; 2014; 9(12):e114850. PubMed ID: 25486279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioengineering of physiologically functional intrinsically innervated human internal anal sphincter constructs.
    Gilmont RR; Raghavan S; Somara S; Bitar KN
    Tissue Eng Part A; 2014 Jun; 20(11-12):1603-11. PubMed ID: 24328537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioengineered Human Pyloric Sphincters Using Autologous Smooth Muscle and Neural Progenitor Cells.
    Rego SL; Zakhem E; Orlando G; Bitar KN
    Tissue Eng Part A; 2016 Jan; 22(1-2):151-60. PubMed ID: 26563426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of extracellular matrix composition on the differentiation of neuronal subtypes in tissue engineered innervated intestinal smooth muscle sheets.
    Raghavan S; Bitar KN
    Biomaterials; 2014 Aug; 35(26):7429-40. PubMed ID: 24929617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.
    Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Srouji S; Livne E; Reis RL; Neves NM
    J Tissue Eng Regen Med; 2012 Jan; 6(1):21-8. PubMed ID: 21312336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vitro engineering of implantable human urinary tract tissue matrices.
    Danielsson C; Adelöw C; Hubschmid U; Neuenschwander P; Frey P
    Swiss Med Wkly; 2007 Mar; 137 Suppl 155():93S-98S. PubMed ID: 17874511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perichondrium directed cartilage formation in silk fibroin and chitosan blend scaffolds for tracheal transplantation.
    Zang M; Zhang Q; Davis G; Huang G; Jaffari M; Ríos CN; Gupta V; Yu P; Mathur AB
    Acta Biomater; 2011 Sep; 7(9):3422-31. PubMed ID: 21640205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioengineering functional human sphincteric and non-sphincteric gastrointestinal smooth muscle constructs.
    Rego SL; Zakhem E; Orlando G; Bitar KN
    Methods; 2016 Apr; 99():128-34. PubMed ID: 26314281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioengineered three-dimensional physiological model of colonic longitudinal smooth muscle in vitro.
    Raghavan S; Lam MT; Foster LL; Gilmont RR; Somara S; Takayama S; Bitar KN
    Tissue Eng Part C Methods; 2010 Oct; 16(5):999-1009. PubMed ID: 20001822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perianal implantation of bioengineered human internal anal sphincter constructs intrinsically innervated with human neural progenitor cells.
    Raghavan S; Miyasaka EA; Gilmont RR; Somara S; Teitelbaum DH; Bitar KN
    Surgery; 2014 Apr; 155(4):668-74. PubMed ID: 24582493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a three-dimensional physiological model of the internal anal sphincter bioengineered in vitro from isolated smooth muscle cells.
    Hecker L; Baar K; Dennis RG; Bitar KN
    Am J Physiol Gastrointest Liver Physiol; 2005 Aug; 289(2):G188-96. PubMed ID: 15774939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical properties of an implanted engineered tubular gut-sphincter complex.
    Zakhem E; El Bahrawy M; Orlando G; Bitar KN
    J Tissue Eng Regen Med; 2017 Dec; 11(12):3398-3407. PubMed ID: 27882697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of chitosan-coated fibers as a scaffold for three-dimensional cultures of rabbit fibroblasts for ligament tissue engineering.
    Sarukawa J; Takahashi M; Abe M; Suzuki D; Tokura S; Furuike T; Tamura H
    J Biomater Sci Polym Ed; 2011; 22(4-6):717-32. PubMed ID: 20566054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of chitosan scaffold microstructure on mesenchymal stem cell chondrogenesis.
    Ragetly GR; Griffon DJ; Lee HB; Fredericks LP; Gordon-Evans W; Chung YS
    Acta Biomater; 2010 Apr; 6(4):1430-6. PubMed ID: 19861178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.