BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 24315741)

  • 1. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies.
    Sideras K; Braat H; Kwekkeboom J; van Eijck CH; Peppelenbosch MP; Sleijfer S; Bruno M
    Cancer Treat Rev; 2014 May; 40(4):513-22. PubMed ID: 24315741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pancreatic cancer: role of the immune system in cancer progression and vaccine-based immunotherapy.
    Amedei A; Niccolai E; Prisco D
    Hum Vaccin Immunother; 2014; 10(11):3354-68. PubMed ID: 25483688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular immunological approaches to biotherapy of human cancers--a review, hypothesis and implications.
    Becker Y
    Anticancer Res; 2006; 26(2A):1113-34. PubMed ID: 16619514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current immunotherapeutic strategies in pancreatic cancer.
    Plate JM
    Surg Oncol Clin N Am; 2007 Oct; 16(4):919-43, xi. PubMed ID: 18022552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immune-based therapies in pancreatic and colorectal cancers and biomarkers of responsiveness.
    Di Caro G; Castino GF; Bergomas F; Cortese N; Chiriva-Internati M; Grizzi F; Marchesi F
    Expert Rev Anticancer Ther; 2014 Oct; 14(10):1219-28. PubMed ID: 25222571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of established pancreatic cancers following specific active immunotherapy with interleukin-2 gene-transduced tumor cells.
    Clary BM; Coveney EC; Philip R; Blazer DG; Morse M; Gilboa E; Lyerly HK
    Cancer Gene Ther; 1997; 4(2):97-104. PubMed ID: 9080118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of the immune reaction to pancreatic cancer from inception to invasion.
    Clark CE; Hingorani SR; Mick R; Combs C; Tuveson DA; Vonderheide RH
    Cancer Res; 2007 Oct; 67(19):9518-27. PubMed ID: 17909062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of intercellular adhesion molecule (ICAM)-1 or ICAM-2 is critical in determining sensitivity of pancreatic cancer cells to cytolysis by human gammadelta-T cells: implications in the design of gammadelta-T-cell-based immunotherapies for pancreatic cancer.
    Liu Z; Guo B; Lopez RD
    J Gastroenterol Hepatol; 2009 May; 24(5):900-11. PubMed ID: 19175829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting tumor-associated macrophages to combat pancreatic cancer.
    Cui R; Yue W; Lattime EC; Stein MN; Xu Q; Tan XL
    Oncotarget; 2016 Aug; 7(31):50735-50754. PubMed ID: 27191744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunologic approaches to the management of pancreatic cancer.
    Laheru D; Biedrzycki B; Jaffee EM
    Cancer J; 2001; 7(4):324-37. PubMed ID: 11561608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving cancer immunotherapy by targeting tumor-induced immune suppression.
    Stewart TJ; Smyth MJ
    Cancer Metastasis Rev; 2011 Mar; 30(1):125-40. PubMed ID: 21249424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The immune network in pancreatic cancer development and progression.
    Wörmann SM; Diakopoulos KN; Lesina M; Algül H
    Oncogene; 2014 Jun; 33(23):2956-67. PubMed ID: 23851493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetically induced pancreatic adenocarcinoma is highly immunogenic and causes spontaneous tumor-specific immune responses.
    Garbe AI; Vermeer B; Gamrekelashvili J; von Wasielewski R; Greten FR; Westendorf AM; Buer J; Schmid RM; Manns MP; Korangy F; Greten TF
    Cancer Res; 2006 Jan; 66(1):508-16. PubMed ID: 16397267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ovarian cancer creates a suppressive microenvironment to escape immune elimination.
    Yigit R; Massuger LF; Figdor CG; Torensma R
    Gynecol Oncol; 2010 May; 117(2):366-72. PubMed ID: 20144842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting tumor tolerance: A new hope for pancreatic cancer therapy?
    Delitto D; Wallet SM; Hughes SJ
    Pharmacol Ther; 2016 Oct; 166():9-29. PubMed ID: 27343757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of anti-tumor immunity by high levels of Th1 and Th17 with a combination of dendritic cell fusion hybrids and regulatory T cell depletion in pancreatic cancer.
    Yamamoto M; Kamigaki T; Yamashita K; Hori Y; Hasegawa H; Kuroda D; Moriyama H; Nagata M; Ku Y; Kuroda Y
    Oncol Rep; 2009 Aug; 22(2):337-43. PubMed ID: 19578774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased immunogenicity of tumor-associated antigen, mucin 1, engineered to express alpha-gal epitopes: a novel approach to immunotherapy in pancreatic cancer.
    Deguchi T; Tanemura M; Miyoshi E; Nagano H; Machida T; Ohmura Y; Kobayashi S; Marubashi S; Eguchi H; Takeda Y; Ito T; Mori M; Doki Y; Sawa Y
    Cancer Res; 2010 Jul; 70(13):5259-69. PubMed ID: 20530670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted virus replication plus immunotherapy eradicates primary and distant pancreatic tumors in nude mice.
    Sarkar D; Su ZZ; Vozhilla N; Park ES; Randolph A; Valerie K; Fisher PB
    Cancer Res; 2005 Oct; 65(19):9056-63. PubMed ID: 16204080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary analysis for clinical efficacy of immunotherapy in patients with pancreatic cancer.
    Chen L; Zhang X
    Immunotherapy; 2016 Feb; 8(2):223-34. PubMed ID: 26565954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies to relieve immunosuppression in pancreatic cancer.
    Schnurr M; Duewell P; Bauer C; Rothenfusser S; Lauber K; Endres S; Kobold S
    Immunotherapy; 2015; 7(4):363-76. PubMed ID: 25917628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.