BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24315877)

  • 1. Application of ion-sensitive field effect transistors for ion channel screening.
    Walsh KB; DeRoller N; Zhu Y; Koley G
    Biosens Bioelectron; 2014 Apr; 54():448-54. PubMed ID: 24315877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonselective cation and BK channels in apical membrane of outer sulcus epithelial cells.
    Chiba T; Marcus DC
    J Membr Biol; 2000 Mar; 174(2):167-79. PubMed ID: 10742460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sweat Biomarker Sensor Incorporating Picowatt, Three-Dimensional Extended Metal Gate Ion Sensitive Field Effect Transistors.
    Zhang J; Rupakula M; Bellando F; Garcia Cordero E; Longo J; Wildhaber F; Herment G; Guérin H; Ionescu AM
    ACS Sens; 2019 Aug; 4(8):2039-2047. PubMed ID: 31282146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biologically sensitive field-effect transistors: from ISFETs to NanoFETs.
    Pachauri V; Ingebrandt S
    Essays Biochem; 2016 Jun; 60(1):81-90. PubMed ID: 27365038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular nucleotides activate non-selective cation and Ca(2+)-dependent K+ channels in rat osteoclasts.
    Weidema AF; Barbera J; Dixon SJ; Sims SM
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):303-15. PubMed ID: 9306274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ISFET based microsensors for environmental monitoring.
    Jimenez-Jorquera C; Orozco J; Baldi A
    Sensors (Basel); 2010; 10(1):61-83. PubMed ID: 22315527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca(2+)-dependent non-selective cation and potassium channels activated by bradykinin in pig coronary artery endothelial cells.
    Baron A; Frieden M; Chabaud F; Bény JL
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):691-706. PubMed ID: 8799892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cation-permeable vacuolar ion channels in the moss Physcomitrella patens: a patch-clamp study.
    Koselski M; Trebacz K; Dziubinska H
    Planta; 2013 Aug; 238(2):357-67. PubMed ID: 23716185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of large conductance Ca2(+)-activated K(+) channels: ion flux studies by atomic absorption spectrometry.
    Parihar AS; Groebe DR; Scott VE; Feng J; Zhang XF; Warrior U; Gopalakrishnan M; Shieh CC
    Assay Drug Dev Technol; 2003 Oct; 1(5):647-54. PubMed ID: 15090237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant maxi-K channels on transistor, a prototype of iono-electronic interfacing.
    Straub B; Meyer E; Fromherz P
    Nat Biotechnol; 2001 Feb; 19(2):121-4. PubMed ID: 11175724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion sensitive field effect transducer-based biosensors.
    Yuqing M; Jianguo G; Jianrong C
    Biotechnol Adv; 2003 Sep; 21(6):527-34. PubMed ID: 14499153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.
    Farley J; Rudy B
    Biophys J; 1988 Jun; 53(6):919-34. PubMed ID: 2456105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulatory actions of di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS), voltage-sensitive dye, on the BKCa channel in pituitary tumor (GH3) cells.
    Wu SN; Lin MW; Wang YJ
    Pflugers Arch; 2008 Jan; 455(4):687-99. PubMed ID: 17701422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A non-selective cation current activated via the multifunctional Ca(2+)-calmodulin-dependent protein kinase in human epithelial cells.
    Braun AP; Schulman H
    J Physiol; 1995 Oct; 488 ( Pt 1)(Pt 1):37-55. PubMed ID: 8568664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of an atomic absorption rubidium ion efflux assay for KCNQ/M-channels using the ion Channel Reader 8000.
    Wang K; McIlvain B; Tseng E; Kowal D; Jow F; Shen R; Zhang H; Shan QJ; He L; Chen D; Lu Q; Dunlop J
    Assay Drug Dev Technol; 2004 Oct; 2(5):525-34. PubMed ID: 15671650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-activated potassium channels in isolated presynaptic nerve terminals from rat brain.
    Bartschat DK; Blaustein MP
    J Physiol; 1985 Apr; 361():441-57. PubMed ID: 2580982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance evaluation of ISFETs and other ISE sensors for whole blood ion assay.
    Thompson JM
    Med Biol Eng Comput; 1990 May; 28(3):B29-33. PubMed ID: 2377000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening quality for Ca2+-activated potassium channel in IonWorks Quattro is greatly improved by using BAPTA-AM and ionomycin.
    Ido K; Ohwada T; Yasutomi E; Yoshinaga T; Arai T; Kato M; Sawada K
    J Pharmacol Toxicol Methods; 2013; 67(1):16-24. PubMed ID: 23138150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ability of naringenin, a bioflavonoid, to activate M-type potassium current in motor neuron-like cells and to increase BKCa-channel activity in HEK293T cells transfected with α-hSlo subunit.
    Hsu HT; Tseng YT; Lo YC; Wu SN
    BMC Neurosci; 2014 Dec; 15():135. PubMed ID: 25539574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potent activation of large-conductance Ca2+-activated K+ channels by the diphenylurea 1,3-bis-[2-hydroxy-5-(trifluoromethyl)phenyl]urea (NS1643) in pituitary tumor (GH3) cells.
    Wu SN; Peng H; Chen BS; Wang YJ; Wu PY; Lin MW
    Mol Pharmacol; 2008 Dec; 74(6):1696-704. PubMed ID: 18809671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.