These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 24315971)
1. Multi-site saturation by OmniChange yields a pH- and thermally improved phytase. Shivange AV; Dennig A; Schwaneberg U J Biotechnol; 2014 Jan; 170():68-72. PubMed ID: 24315971 [TBL] [Abstract][Full Text] [Related]
2. Directed evolution of a highly active Yersinia mollaretii phytase. Shivange AV; Serwe A; Dennig A; Roccatano D; Haefner S; Schwaneberg U Appl Microbiol Biotechnol; 2012 Jul; 95(2):405-18. PubMed ID: 22159661 [TBL] [Abstract][Full Text] [Related]
3. Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution. Shivange AV; Roccatano D; Schwaneberg U Appl Microbiol Biotechnol; 2016 Jan; 100(1):227-42. PubMed ID: 26403922 [TBL] [Abstract][Full Text] [Related]
4. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu. Tran TT; Mamo G; Búxo L; Le NN; Gaber Y; Mattiasson B; Hatti-Kaul R Enzyme Microb Technol; 2011 Jul; 49(2):177-82. PubMed ID: 22112406 [TBL] [Abstract][Full Text] [Related]
5. Directed evolution of an acid Yersinia mollaretii phytase for broadened activity at neutral pH. Körfer G; Novoa C; Kern J; Balla E; Grütering C; Davari MD; Martinez R; Vojcic L; Schwaneberg U Appl Microbiol Biotechnol; 2018 Nov; 102(22):9607-9620. PubMed ID: 30141080 [TBL] [Abstract][Full Text] [Related]
6. Improvement of Yersinia frederiksenii phytase performance by a single amino acid substitution. Fu D; Huang H; Meng K; Wang Y; Luo H; Yang P; Yuan T; Yao B Biotechnol Bioeng; 2009 Aug; 103(5):857-64. PubMed ID: 19378262 [TBL] [Abstract][Full Text] [Related]
7. Protein consensus-based surface engineering (ProCoS): a computer-assisted method for directed protein evolution. Shivange AV; Hoeffken HW; Haefner S; Schwaneberg U Biotechniques; 2016 Dec; 61(6):305-314. PubMed ID: 27938322 [TBL] [Abstract][Full Text] [Related]
8. A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions. Huang H; Luo H; Wang Y; Fu D; Shao N; Wang G; Yang P; Yao B Appl Microbiol Biotechnol; 2008 Sep; 80(3):417-26. PubMed ID: 18548246 [TBL] [Abstract][Full Text] [Related]
9. Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis. Xu W; Shao R; Wang Z; Yan X Appl Biochem Biotechnol; 2015 Mar; 175(6):3184-94. PubMed ID: 25613522 [TBL] [Abstract][Full Text] [Related]
10. Cumulative improvements of thermostability and pH-activity profile of Aspergillus niger PhyA phytase by site-directed mutagenesis. Zhang W; Lei XG Appl Microbiol Biotechnol; 2008 Jan; 77(5):1033-40. PubMed ID: 17968540 [TBL] [Abstract][Full Text] [Related]
11. Engineering of protease-resistant phytase from Penicillium sp.: high thermal stability, low optimal temperature and pH. Zhao Q; Liu H; Zhang Y; Zhang Y J Biosci Bioeng; 2010 Dec; 110(6):638-45. PubMed ID: 20826112 [TBL] [Abstract][Full Text] [Related]
12. [Mutation research on Q23L and Q23LG272E in phytase derivated from Aspergillus fumigatus]. Gu WN; Yang PL; Wang YR; Luo HY; Meng K; Wu NF; Yao B; Fan YL Sheng Wu Gong Cheng Xue Bao; 2007 Mar; 23(2):273-7. PubMed ID: 17460901 [TBL] [Abstract][Full Text] [Related]
13. Engineering the residual side chains of HAP phytases to improve their pepsin resistance and catalytic efficiency. Niu C; Yang P; Luo H; Huang H; Wang Y; Yao B Sci Rep; 2017 Feb; 7():42133. PubMed ID: 28186144 [TBL] [Abstract][Full Text] [Related]
14. Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure. Tomschy A; Tessier M; Wyss M; Brugger R; Broger C; Schnoebelen L; van Loon AP; Pasamontes L Protein Sci; 2000 Jul; 9(7):1304-11. PubMed ID: 10933495 [TBL] [Abstract][Full Text] [Related]
15. Enhancing the Thermal Resistance of a Novel Acidobacteria-Derived Phytase by Engineering of Disulfide Bridges. Tan H; Miao R; Liu T; Cao X; Wu X; Xie L; Huang Z; Peng W; Gan B J Microbiol Biotechnol; 2016 Oct; 26(10):1717-1722. PubMed ID: 27363471 [TBL] [Abstract][Full Text] [Related]
16. Enhancing thermal tolerance of Aspergillus niger PhyA phytase directed by structural comparison and computational simulation. Han N; Miao H; Yu T; Xu B; Yang Y; Wu Q; Zhang R; Huang Z BMC Biotechnol; 2018 Jun; 18(1):36. PubMed ID: 29859065 [TBL] [Abstract][Full Text] [Related]
17. Rational design-based engineering of a thermostable phytase by site-directed mutagenesis. Fakhravar A; Hesampour A Mol Biol Rep; 2018 Dec; 45(6):2053-2061. PubMed ID: 30196454 [TBL] [Abstract][Full Text] [Related]
18. Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution. Martinez R; Jakob F; Tu R; Siegert P; Maurer KH; Schwaneberg U Biotechnol Bioeng; 2013 Mar; 110(3):711-20. PubMed ID: 23097081 [TBL] [Abstract][Full Text] [Related]
19. Site-directed mutagenesis of disulfide bridges in Aspergillus niger NRRL 3135 phytase (PhyA), their expression in Pichia pastoris and catalytic characterization. Mullaney EJ; Locovare H; Sethumadhavan K; Boone S; Lei XG; Ullah AH Appl Microbiol Biotechnol; 2010 Jul; 87(4):1367-72. PubMed ID: 20376636 [TBL] [Abstract][Full Text] [Related]
20. Exchanging the active site between phytases for altering the functional properties of the enzyme. Lehmann M; Lopez-Ulibarri R; Loch C; Viarouge C; Wyss M; van Loon AP Protein Sci; 2000 Oct; 9(10):1866-72. PubMed ID: 11106158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]