These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24315975)

  • 1. Postnatal developmental changes in the medial nucleus of the trapezoid body in a mouse model of auditory pathology.
    Grimsley CA; Sivaramakrishnan S
    Neurosci Lett; 2014 Jan; 559():152-7. PubMed ID: 24315975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early postnatal development of spontaneous and acoustically evoked discharge activity of principal cells of the medial nucleus of the trapezoid body: an in vivo study in mice.
    Sonntag M; Englitz B; Kopp-Scheinpflug C; Rübsamen R
    J Neurosci; 2009 Jul; 29(30):9510-20. PubMed ID: 19641114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental changes in intrinsic excitability of principal neurons in the rat medial nucleus of the trapezoid body.
    Rusu SI; Borst JG
    Dev Neurobiol; 2011 Apr; 71(4):284-95. PubMed ID: 21394932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of cochlear ablation on calbindin and synaptophysin in the gerbil medial nucleus of the trapezoid body before hearing onset.
    Bazwinsky-Wutschke I; Dehghani F
    J Chem Neuroanat; 2021 Dec; 118():102023. PubMed ID: 34481914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remodelling at the calyx of Held-MNTB synapse in mice developing with unilateral conductive hearing loss.
    Grande G; Negandhi J; Harrison RV; Wang LY
    J Physiol; 2014 Apr; 592(7):1581-600. PubMed ID: 24469075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topographic map refinement and synaptic strengthening of a sound localization circuit require spontaneous peripheral activity.
    Müller NIC; Sonntag M; Maraslioglu A; Hirtz JJ; Friauf E
    J Physiol; 2019 Nov; 597(22):5469-5493. PubMed ID: 31529505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of excitatory synaptic transmission to the superior paraolivary and lateral superior olivary nuclei optimizes differential decoding strategies.
    Felix RA; Magnusson AK
    Neuroscience; 2016 Oct; 334():1-12. PubMed ID: 27476438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory neuronal sizes after a unilateral conductive hearing loss.
    Webster DB
    Exp Neurol; 1983 Jan; 79(1):130-40. PubMed ID: 6822250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protection from noise-induced hearing loss by Kv2.2 potassium currents in the central medial olivocochlear system.
    Tong H; Kopp-Scheinpflug C; Pilati N; Robinson SW; Sinclair JL; Steinert JR; Barnes-Davies M; Allfree R; Grubb BD; Young SM; Forsythe ID
    J Neurosci; 2013 May; 33(21):9113-21. PubMed ID: 23699522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strengthening of the Efferent Olivocochlear System Leads to Synaptic Dysfunction and Tonotopy Disruption of a Central Auditory Nucleus.
    Di Guilmi MN; Boero LE; Castagna VC; Rodríguez-Contreras A; Wedemeyer C; Gómez-Casati ME; Elgoyhen AB
    J Neurosci; 2019 Sep; 39(36):7037-7048. PubMed ID: 31217330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic Inhibition of Medial Olivocochlear Efferent Neurons by Neurons of the Medial Nucleus of the Trapezoid Body.
    Torres Cadenas L; Fischl MJ; Weisz CJC
    J Neurosci; 2020 Jan; 40(3):509-525. PubMed ID: 31719165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycinergic and GABAergic calcium responses in the developing lateral superior olive.
    Kullmann PH; Ene FA; Kandler K
    Eur J Neurosci; 2002 Apr; 15(7):1093-104. PubMed ID: 11982621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain-specific differences in the development of neuronal excitability in the mouse ventral nucleus of the trapezoid body.
    Sinclair JL; Barnes-Davies M; Kopp-Scheinpflug C; Forsythe ID
    Hear Res; 2017 Oct; 354():28-37. PubMed ID: 28843833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre- and postsynaptic properties of glutamatergic transmission in the immature inhibitory MNTB-LSO pathway.
    Case DT; Gillespie DC
    J Neurophysiol; 2011 Nov; 106(5):2570-9. PubMed ID: 21832038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous Cholinergic Signaling Modulates Sound-Evoked Responses of the Medial Nucleus of the Trapezoid Body.
    Zhang C; Beebe NL; Schofield BR; Pecka M; Burger RM
    J Neurosci; 2021 Jan; 41(4):674-688. PubMed ID: 33268542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice.
    Wang Y; Manis PB
    J Neurophysiol; 2005 Sep; 94(3):1814-24. PubMed ID: 15901757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycinergic/GABAergic synapses in the lateral superior olive are excitatory in neonatal C57Bl/6J mice.
    Kullmann PH; Kandler K
    Brain Res Dev Brain Res; 2001 Nov; 131(1-2):143-7. PubMed ID: 11718844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural and lesion-induced decrease in cell proliferation in the medial nucleus of the trapezoid body during hearing development.
    Saliu A; Adise S; Xian S; Kudelska K; Rodríguez-Contreras A
    J Comp Neurol; 2014 Apr; 522(5):971-85. PubMed ID: 24115041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Descending projections from the inferior colliculus to medial olivocochlear efferents: Mice with normal hearing, early onset hearing loss, and congenital deafness.
    Suthakar K; Ryugo DK
    Hear Res; 2017 Jan; 343():34-49. PubMed ID: 27421755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative posthearing development of inhibitory inputs to the lateral superior olive in gerbils and mice.
    Walcher J; Hassfurth B; Grothe B; Koch U
    J Neurophysiol; 2011 Sep; 106(3):1443-53. PubMed ID: 21697449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.