These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 24316536)
1. Fluorescence enhancement of quercetin complexes by silver nanoparticles and its analytical application. Liu P; Zhao L; Wu X; Huang F; Wang M; Liu X Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():238-45. PubMed ID: 24316536 [TBL] [Abstract][Full Text] [Related]
2. Silver nanoparticles fluorescence enhancement effect for determination of nucleic acids with kaempferol-Al(III). Cao Y; Wu X; Wang M Talanta; 2011 May; 84(4):1188-94. PubMed ID: 21530797 [TBL] [Abstract][Full Text] [Related]
3. Study on the interaction of nucleic acids with silver nanoparticles--Al(III) by resonance light scattering technique and its analytical application. Zhou H; Wu X; Yang J Talanta; 2009 May; 78(3):809-13. PubMed ID: 19269433 [TBL] [Abstract][Full Text] [Related]
4. Nucleic acids determination using the complex of eriochrome black T and silver nanoparticles in a resonance light scattering technique. Zhou H; Wu X; Meng F; Yang J; Wang M Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):681-6. PubMed ID: 21183399 [TBL] [Abstract][Full Text] [Related]
5. Fluorescence enhancement of the silver nanoparticales--curcumin-cetyltrimethylammonium bromide-nucleic acids system and its analytical application. Zhou H; Wu X; Xu W; Yang J; Yang Q J Fluoresc; 2010 Jul; 20(4):843-50. PubMed ID: 20204682 [TBL] [Abstract][Full Text] [Related]
6. The fluorescence enhancement of quercetin-nucleic acid system and the analytical application. Liu Y; Wu X; Zhou H; Liu X; Zhang F; Yang J Luminescence; 2009; 24(6):416-21. PubMed ID: 19424980 [TBL] [Abstract][Full Text] [Related]
7. Study on the interaction between silver nanoparticles and nucleic acids in the presence of cetyltrimethylammonium bromide and its analytical application. Zheng J; Wu X; Wang M; Ran D; Xu W; Yang J Talanta; 2008 Jan; 74(4):526-32. PubMed ID: 18371671 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence enhancement of silver nanoparticle hybrid probes and ultrasensitive detection of IgE. Li H; Qiang W; Vuki M; Xu D; Chen HY Anal Chem; 2011 Dec; 83(23):8945-52. PubMed ID: 21988285 [TBL] [Abstract][Full Text] [Related]
9. Biopolymer capped silver nanoparticles as fluorophore for ultrasensitive and selective determination of malathion. Vasimalai N; Abraham John S Talanta; 2013 Oct; 115():24-31. PubMed ID: 24054557 [TBL] [Abstract][Full Text] [Related]
10. Inspiration from chemical photography: accelerated photoconversion of AgCl to functional silver nanoparticles mediated by DNA. Wang G; Nishio T; Sato M; Ishikawa A; Nambara K; Nagakawa K; Matsuo Y; Niikura K; Ijiro K Chem Commun (Camb); 2011 Sep; 47(33):9426-8. PubMed ID: 21776503 [TBL] [Abstract][Full Text] [Related]
11. Formation of plasmonic silver nanoparticles by flavonoid reduction: A comparative study and application for determination of these substances. Terenteva EA; Apyari VV; Dmitrienko SG; Zolotov YA Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():89-95. PubMed ID: 26125987 [TBL] [Abstract][Full Text] [Related]
12. Highly sensitive, label-free colorimetric assay of trypsin using silver nanoparticles. Miao P; Liu T; Li X; Ning L; Yin J; Han K Biosens Bioelectron; 2013 Nov; 49():20-4. PubMed ID: 23708813 [TBL] [Abstract][Full Text] [Related]
13. Interaction of flavonols with human serum albumin: a biophysical study showing structure-activity relationship and enhancement when coated on silver nanoparticles. Das P; Chaudhari SK; Das A; Kundu S; Saha C J Biomol Struct Dyn; 2019 Apr; 37(6):1414-1426. PubMed ID: 29633910 [TBL] [Abstract][Full Text] [Related]
14. Conjugated polyelectrolyte-stabilized silver nanoparticles coupled with pyrene derivative for ultrasensitive fluorescent detection of iodide. Xiao Y; Zhang Y; Huang H; Zhang Y; Du B; Chen F; Zheng Q; He X; Wang K Talanta; 2015 Jan; 131():678-83. PubMed ID: 25281159 [TBL] [Abstract][Full Text] [Related]
15. Fatty acid alteration in liver, brain, muscle, and oocyte of zebrafish (Danio rerio) exposed to silver nanoparticles and mitigating influence of quercetin-supplemented diet. Seyedi J; Tayemeh MB; Esmaeilbeigi M; Joo HS; Langeroudi EK; Banan A; Johari SA; Jami MJ Environ Res; 2021 Mar; 194():110611. PubMed ID: 33358875 [TBL] [Abstract][Full Text] [Related]
16. Novel switchable sensor for phosphate based on the distance-dependant fluorescence coupling of cysteine-capped cadmium sulfide quantum dots and silver nanoparticles. Wang GL; Jiao HJ; Zhu XY; Dong YM; Li ZJ Analyst; 2013 Apr; 138(7):2000-6. PubMed ID: 23435242 [TBL] [Abstract][Full Text] [Related]
17. Visual sandwich immunoassay system on the basis of plasmon resonance scattering signals of silver nanoparticles. Ling J; Li YF; Huang CZ Anal Chem; 2009 Feb; 81(4):1707-14. PubMed ID: 19173573 [TBL] [Abstract][Full Text] [Related]
19. A sensitive spectrofluorometric method for detection of berberine hydrochloride using Ag nanoclusters directed by natural fish sperm DNA. Liang S; Kuang Y; Ma F; Chen S; Long Y Biosens Bioelectron; 2016 Nov; 85():758-763. PubMed ID: 27266661 [TBL] [Abstract][Full Text] [Related]
20. Chemiluminescence of luminol catalyzed by silver nanoparticles. Chen H; Gao F; He R; Cui D J Colloid Interface Sci; 2007 Nov; 315(1):158-63. PubMed ID: 17681516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]