These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24316566)

  • 1. A novel voice sensor for the detection of speech signals.
    Wang KC
    Sensors (Basel); 2013 Dec; 13(12):16533-50. PubMed ID: 24316566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voice activity detection algorithm using perceptual wavelet entropy neighbor slope.
    Lee G; Na SD; Cho JH; Kim MN
    Biomed Mater Eng; 2014; 24(6):3295-301. PubMed ID: 25227039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Robust Dual-Microphone Generalized Sidelobe Canceller Using a Bone-Conduction Sensor for Speech Enhancement.
    Zhou Y; Wang H; Chu Y; Liu H
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CNN-based noise reduction for multi-channel speech enhancement system with discrete wavelet transform (DWT) preprocessing.
    Cherukuru P; Mustafa MB
    PeerJ Comput Sci; 2024; 10():e1901. PubMed ID: 38435554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise robust speech rate estimation using signal-to-noise ratio dependent sub-band selection and peak detection strategy.
    Yarra C; Nagesh S; Deshmukh OD; Kumar Ghosh P
    J Acoust Soc Am; 2019 Sep; 146(3):1615. PubMed ID: 31590492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Audio Content Classification Using Hybrid-Based SMD and Entropy-Based VAD.
    Wang KC
    Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise reduction algorithm with the soft thresholding based on the Shannon entropy and bone-conduction speech cross- correlation bands.
    Na SD; Wei Q; Seong KW; Cho JH; Kim MN
    Technol Health Care; 2018; 26(S1):281-289. PubMed ID: 29710756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambulatory Phonation Monitoring With Wireless Microphones Based on the Speech Energy Envelope: Algorithm Development and Validation.
    Wang CT; Han JY; Fang SH; Lai YH
    JMIR Mhealth Uhealth; 2020 Dec; 8(12):e16746. PubMed ID: 33270033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A priori SNR estimation and noise estimation for speech enhancement.
    Yao R; Zeng Z; Zhu P
    EURASIP J Adv Signal Process; 2016; 2016(1):101. PubMed ID: 27729928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Real-Time Dual-Microphone Speech Enhancement Algorithm Assisted by Bone Conduction Sensor.
    Zhou Y; Chen Y; Ma Y; Liu H
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hybrid Speech Enhancement Algorithm for Voice Assistance Application.
    Gnanamanickam J; Natarajan Y; K R SP
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voice activity detection in noisy environments based on double-combined fourier transform and line fitting.
    Park J; Kim W; Han DK; Ko H
    ScientificWorldJournal; 2014; 2014():146040. PubMed ID: 25170520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hierarchical framework approach for voice activity detection and speech enhancement.
    Zhang Y; Tang ZM; Li YP; Luo Y
    ScientificWorldJournal; 2014; 2014():723643. PubMed ID: 24959621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical voice activity detection based on integrated bispectrum likelihood ratio tests for robust speech recognition.
    Ramírez J; Górriz JM; Segura JC
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2946-58. PubMed ID: 17550192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a voice activity controlled noise canceller.
    Abid Noor AO; Samad SA; Hussain A
    Sensors (Basel); 2012; 12(5):6727-45. PubMed ID: 22778667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speech endpoint detection based on speech time-frequency enhancement and spectral entropy.
    Yingle F; Yi L; Chuanyan W
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():4682-4. PubMed ID: 17281285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A recurrent neural fuzzy network for word boundary detection in variable noise-level environments.
    Wu GD; Lin CT
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(1):84-97. PubMed ID: 18244769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise-robust speech triage.
    Bartos AL; Cipr T; Nelson DJ; Schwarz P; Banowetz J; Jerabek L
    J Acoust Soc Am; 2018 Apr; 143(4):2313. PubMed ID: 29716295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An effective cluster-based model for robust speech detection and speech recognition in noisy environments.
    Górriz JM; Ramírez J; Segura JC; Puntonet CG
    J Acoust Soc Am; 2006 Jul; 120(1):470-81. PubMed ID: 16875243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A subspace approach based on embedded prewhitening for voice activity detection.
    Kim DK; Chang JH
    J Acoust Soc Am; 2011 Nov; 130(5):EL304-10. PubMed ID: 22088032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.