These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 2431681)

  • 1. Regulation of the mitochondrial matrix volume in vivo and in vitro. The role of calcium.
    Halestrap AP; Quinlan PT; Whipps DE; Armston AE
    Biochem J; 1986 Jun; 236(3):779-87. PubMed ID: 2431681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liver mitochondrial pyrophosphate concentration is increased by Ca2+ and regulates the intramitochondrial volume and adenine nucleotide content.
    Davidson AM; Halestrap AP
    Biochem J; 1987 Sep; 246(3):715-23. PubMed ID: 2825649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of the halothane-dependent efflux of calcium from rat-liver mitochondria.
    Grist EM; Baum H
    Eur J Biochem; 1975 Sep; 57(2):621-6. PubMed ID: 240726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramitochondrial phospholipase activity and the effects of Ca2+ plus N-ethylmaleimide on mitochondrial function.
    Pfeiffer DR; Schmid PC; Beatrice MC; Schmid HH
    J Biol Chem; 1979 Nov; 254(22):11485-94. PubMed ID: 40983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruthenium red inhibits mitochondrial Na+ and K+ uniports induced by magnesium removal.
    Kapus A; Szászi K; Káldi K; Ligeti E; Fonyó A
    J Biol Chem; 1990 Oct; 265(30):18063-6. PubMed ID: 1698784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium ion-dependent signalling and mitochondrial dysfunction: mitochondrial calcium uptake during hormonal stimulation in intact liver cells and its implication for the mitochondrial permeability transition.
    Hoek JB; Farber JL; Thomas AP; Wang X
    Biochim Biophys Acta; 1995 May; 1271(1):93-102. PubMed ID: 7599232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flufenamic acid as an inducer of mitochondrial permeability transition.
    Jordani MC; Santos AC; Prado IM; Uyemura SA; Curti C
    Mol Cell Biochem; 2000 Jul; 210(1-2):153-8. PubMed ID: 10976768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of palmitate/Ca2+(Sr2+)-induced pore in the cycling of ions across the mitochondrial membrane.
    Mironova GD; Saris NE; Belosludtseva NV; Agafonov AV; Elantsev AB; Belosludtsev KN
    Biochim Biophys Acta; 2015 Feb; 1848(2):488-95. PubMed ID: 25450352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in mitochondrial Ca2+ flux by the antibiotic X-537A (lasalocid-A).
    Antonio RV; da Silva LP; Vercesi AE
    Biochim Biophys Acta; 1991 Feb; 1056(3):250-8. PubMed ID: 1705820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and oxidation of choline by liver mitochondria.
    Tyler DD
    Biochem J; 1977 Sep; 166(3):571-81. PubMed ID: 23103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bivalent metal ions modulate Cd2+ effects on isolated rat liver mitochondria.
    Belyaeva EA; Glazunov VV; Nikitina ER; Korotkov SM
    J Bioenerg Biomembr; 2001 Aug; 33(4):303-18. PubMed ID: 11710806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of phospholipase A2 inhibitors on ruthenium red-induced Ca2+ release from mitochondria.
    Broekemeier KM; Schmid PC; Schmid HH; Pfeiffer DR
    J Biol Chem; 1985 Jan; 260(1):105-13. PubMed ID: 2578123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the state of calcium ions in isolated rat liver mitochondria. II. Effects of phosphate and pH on Ca2+-induced Ca2+ release.
    Blaich G; Krell H; Täfler M; Pfaff E
    Hoppe Seylers Z Physiol Chem; 1984 Jan; 365(1):73-82. PubMed ID: 6201430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EGTA inhibits reverse uniport-dependent Ca2+ release from uncoupled mitochondria. Possible regulation of the Ca2+ uniporter by a Ca2+ binding site on the cytoplasmic side of the inner membrane.
    Igbavboa U; Pfeiffer DR
    J Biol Chem; 1988 Jan; 263(3):1405-12. PubMed ID: 2447088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative damage to mitochondria is mediated by the Ca(2+)-dependent inner-membrane permeability transition.
    Takeyama N; Matsuo N; Tanaka T
    Biochem J; 1993 Sep; 294 ( Pt 3)(Pt 3):719-25. PubMed ID: 7691056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cd2+ versus Ca2+-produced mitochondrial membrane permeabilization: a proposed direct participation of respiratory complexes I and III.
    Belyaeva EA; Glazunov VV; Korotkov SM
    Chem Biol Interact; 2004 Dec; 150(3):253-70. PubMed ID: 15560892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Changes in the effect of Cd2+ on the respiration of isolated rat liver mitochondria after their preincubation with Ca2+, Sr2+, Ba2+, Mn2+ and ruthenium red].
    Korotkov SM; Skul'skiĭ IA
    Tsitologiia; 1996; 38(4-5):500-9. PubMed ID: 8966752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ebselen on Ca2+ transport in mitochondria.
    Gogvadze V; Klein SD; Shigenaga M; Ames BN; Richter C
    Redox Rep; 2000; 5(6):359-63. PubMed ID: 11140746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reye's syndrome: mitochondrial swelling and Ca2+ release induced by Reye's plasma, allantoin, and salicylate.
    Martens ME; Chang CH; Lee CP
    Arch Biochem Biophys; 1986 Feb; 244(2):773-86. PubMed ID: 3080954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane.
    Kushnareva YE; Sokolove PM
    Arch Biochem Biophys; 2000 Apr; 376(2):377-88. PubMed ID: 10775426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.