BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24316836)

  • 1. Crystallization and preliminary X-ray analysis of the ATPase domain of the σ(54)-dependent transcription activator NtrC1 from Aquifex aeolicus bound to the ATP analog ADP-BeFx.
    Sysoeva TA; Yennawar N; Allaire M; Nixon BT
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Dec; 69(Pt 12):1384-8. PubMed ID: 24316836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the σ
    Siegel AR; Wemmer DE
    J Mol Biol; 2016 Nov; 428(23):4669-4685. PubMed ID: 27732872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide-induced asymmetry within ATPase activator ring drives σ54-RNAP interaction and ATP hydrolysis.
    Sysoeva TA; Chowdhury S; Guo L; Nixon BT
    Genes Dev; 2013 Nov; 27(22):2500-11. PubMed ID: 24240239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP ground- and transition states of bacterial enhancer binding AAA+ ATPases support complex formation with their target protein, sigma54.
    Chen B; Doucleff M; Wemmer DE; De Carlo S; Huang HH; Nogales E; Hoover TR; Kondrashkina E; Guo L; Nixon BT
    Structure; 2007 Apr; 15(4):429-40. PubMed ID: 17437715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural mechanism of GAF-regulated σ(54) activators from Aquifex aeolicus.
    Batchelor JD; Lee PS; Wang AC; Doucleff M; Wemmer DE
    J Mol Biol; 2013 Jan; 425(1):156-70. PubMed ID: 23123379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative regulation of AAA + ATPase assembly by two component receiver domains: a transcription activation mechanism that is conserved in mesophilic and extremely hyperthermophilic bacteria.
    Doucleff M; Chen B; Maris AE; Wemmer DE; Kondrashkina E; Nixon BT
    J Mol Biol; 2005 Oct; 353(2):242-55. PubMed ID: 16169010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation.
    Schumacher J; Joly N; Rappas M; Zhang X; Buck M
    J Struct Biol; 2006 Oct; 156(1):190-9. PubMed ID: 16531068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engagement of arginine finger to ATP triggers large conformational changes in NtrC1 AAA+ ATPase for remodeling bacterial RNA polymerase.
    Chen B; Sysoeva TA; Chowdhury S; Guo L; De Carlo S; Hanson JA; Yang H; Nixon BT
    Structure; 2010 Nov; 18(11):1420-30. PubMed ID: 21070941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: identifying a surface that binds sigma 54.
    Bordes P; Wigneshweraraj SR; Schumacher J; Zhang X; Chaney M; Buck M
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2278-83. PubMed ID: 12601152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial Enhancer Binding Proteins-AAA
    Gao F; Danson AE; Ye F; Jovanovic M; Buck M; Zhang X
    Biomolecules; 2020 Feb; 10(3):. PubMed ID: 32106553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of homotropic control to coordinate hydrolysis in a hexameric AAA+ ring ATPase.
    Schumacher J; Joly N; Claeys-Bouuaert IL; Aziz SA; Rappas M; Zhang X; Buck M
    J Mol Biol; 2008 Aug; 381(1):1-12. PubMed ID: 18599077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli.
    Chen B; Sysoeva TA; Chowdhury S; Guo L; Nixon BT
    FEBS J; 2009 Feb; 276(3):807-15. PubMed ID: 19143839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains.
    Lee SY; De La Torre A; Yan D; Kustu S; Nixon BT; Wemmer DE
    Genes Dev; 2003 Oct; 17(20):2552-63. PubMed ID: 14561776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique ATPase site architecture triggers cis-mediated synchronized ATP binding in heptameric AAA+-ATPase domain of flagellar regulatory protein FlrC.
    Dey S; Biswas M; Sen U; Dasgupta J
    J Biol Chem; 2015 Apr; 290(14):8734-47. PubMed ID: 25688103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the self-association residues within a homomeric and a heteromeric AAA+ enhancer binding protein.
    Lawton E; Jovanovic M; Joly N; Waite C; Zhang N; Wang B; Burrows P; Buck M
    J Mol Biol; 2014 Apr; 426(8):1692-710. PubMed ID: 24434682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide-dependent interactions between a fork junction-RNA polymerase complex and an AAA+ transcriptional activator protein.
    Cannon WV; Schumacher J; Buck M
    Nucleic Acids Res; 2004; 32(15):4596-608. PubMed ID: 15333692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the central and C-terminal domain of the sigma(54)-activator ZraR.
    Sallai L; Tucker PA
    J Struct Biol; 2005 Aug; 151(2):160-70. PubMed ID: 16005641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of
    Campbell EA; Kamath S; Rajashankar KR; Wu M; Darst SA
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):E1805-E1814. PubMed ID: 28223493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies.
    Sharma A; Leach RN; Gell C; Zhang N; Burrows PC; Shepherd DA; Wigneshweraraj S; Smith DA; Zhang X; Buck M; Stockley PG; Tuma R
    Nucleic Acids Res; 2014 Apr; 42(8):5177-90. PubMed ID: 24553251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of activator-Esigma54 complexes formed with nucleotide-metal fluoride analogues.
    Burrows PC; Joly N; Nixon BT; Buck M
    Nucleic Acids Res; 2009 Aug; 37(15):5138-50. PubMed ID: 19553192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.