BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24316874)

  • 21. Viscoelastic properties of mitral valve leaflets: An analysis of regional variation and frequency-dependency.
    Baxter J; Buchan KG; Espino DM
    Proc Inst Mech Eng H; 2017 Oct; 231(10):938-944. PubMed ID: 28707559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Myxomatous mitral valve chordae. I: Mechanical properties.
    Barber JE; Ratliff NB; Cosgrove DM; Griffin BP; Vesely I
    J Heart Valve Dis; 2001 May; 10(3):320-4. PubMed ID: 11380094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural changes of rat mitral valve chordae tendineae during postnatal development.
    Dickinson MG; Vesely I
    J Heart Valve Dis; 2012 Jul; 21(4):433-9. PubMed ID: 22953667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The structure and mechanical properties of the mitral valve leaflet-strut chordae transition zone.
    Chen L; Yin FC; May-Newman K
    J Biomech Eng; 2004 Apr; 126(2):244-51. PubMed ID: 15179855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tissue-engineered mitral valve chordae tendineae: Biomechanical and biological characterization of decellularized porcine chordae.
    Gong W; Li S; Lei D; Huang P; Yuan Z; You Z; Ye X; Zhao Q
    J Mech Behav Biomed Mater; 2016 Mar; 56():205-217. PubMed ID: 26708255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitral valve basal chordae: comparative anatomy and terminology.
    Degandt AA; Weber PA; Saber HA; Duran CM
    Ann Thorac Surg; 2007 Oct; 84(4):1250-5. PubMed ID: 17888977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical properties of human mitral valve chordae tendineae: variation with size and strain rate.
    Lim KO; Boughner DR
    Can J Physiol Pharmacol; 1975 Jun; 53(3):330-9. PubMed ID: 1148920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patterns of systolic stress distribution on mitral valve anterior leaflet chordal apparatus. A structural mechanical theoretical analysis.
    Nazari S; Carli F; Salvi S; Banfi C; Aluffi A; Mourad Z; Buniva P; Rescigno G
    J Cardiovasc Surg (Torino); 2000 Apr; 41(2):193-202. PubMed ID: 10901521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural characterization of the chordae tendineae in native porcine mitral valves.
    Ritchie J; Warnock JN; Yoganathan AP
    Ann Thorac Surg; 2005 Jul; 80(1):189-97. PubMed ID: 15975365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential tension between secondary and primary mitral chordae in an acute in-vivo porcine model.
    Lomholt M; Nielsen SL; Hansen SB; Andersen NT; Hasenkam JM
    J Heart Valve Dis; 2002 May; 11(3):337-45. PubMed ID: 12056724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrastructure of porcine mitral valve chordae tendineae.
    Liao J; Priddy LB; Wang B; Chen J; Vesely I
    J Heart Valve Dis; 2009 May; 18(3):292-9. PubMed ID: 19557986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of papillary muscle position on chordal force distribution: an in-vitro study.
    Jimenez JH; Soerensen DD; He Z; Ritchie J; Yoganathan AP
    J Heart Valve Dis; 2005 May; 14(3):295-302. PubMed ID: 15974521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Skewness angle of interfibrillar proteoglycans increases with applied load on mitral valve chordae tendineae.
    Liao J; Vesely I
    J Biomech; 2007; 40(2):390-8. PubMed ID: 16483580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of anterior mitral leaflet second-order chordae tendineae on left ventricular systolic function.
    Nielsen SL; Timek TA; Green GR; Dagum P; Daughters GT; Hasenkam JM; Bolger AF; Ingels NB; Miller DC
    Circulation; 2003 Jul; 108(4):486-91. PubMed ID: 12860916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study of the traction resistance of mitral valve chordae tendineae.
    Lobo FL; Takeda FR; Brandão CM; Braile DM; Jatene FB; Pomerantzeff PM
    Clinics (Sao Paulo); 2006 Oct; 61(5):395-400. PubMed ID: 17072436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of decellularization and cross-linking techniques on the fatigue life and calcification of mitral valve chordae tendineae.
    Gunning GM; Murphy BP
    J Mech Behav Biomed Mater; 2016 Apr; 57():321-33. PubMed ID: 26875146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluid-structure interaction and structural analyses using a comprehensive mitral valve model with 3D chordal structure.
    Toma M; Einstein DR; Bloodworth CH; Cochran RP; Yoganathan AP; Kunzelman KS
    Int J Numer Method Biomed Eng; 2017 Apr; 33(4):. PubMed ID: 27342229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Restoration of left ventricular systolic performance after reattachment of the mitral chordae tendineae. The importance of valvular-ventricular interaction.
    Sarris GE; Cahill PD; Hansen DE; Derby GC; Miller DC
    J Thorac Cardiovasc Surg; 1988 Jun; 95(6):969-79. PubMed ID: 3374162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification of load-dependent changes in the collagen fiber architecture for the strut chordae tendineae-leaflet insertion of porcine atrioventricular heart valves.
    Ross CJ; Hsu MC; Baumwart R; Mir A; Burkhart HM; Holzapfel GA; Wu Y; Lee CH
    Biomech Model Mechanobiol; 2021 Feb; 20(1):223-241. PubMed ID: 32809131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Importance of the mitral subvalvular apparatus for left ventricular segmental systolic mechanics.
    Yun KL; Fann JI; Rayhill SC; Nasserbakht F; Derby GC; Handen CE; Bolger AF; Miller DC
    Circulation; 1990 Nov; 82(5 Suppl):IV89-104. PubMed ID: 2225439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.