These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24316887)

  • 1. APTS and rGO co-functionalized pyrenated fluorescent nanonets for representative vapor phase nitroaromatic explosive detection.
    Guo L; Zu B; Yang Z; Cao H; Zheng X; Dou X
    Nanoscale; 2014; 6(3):1467-73. PubMed ID: 24316887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer.
    Stringer RC; Gangopadhyay S; Grant SA
    Anal Chem; 2010 May; 82(10):4015-9. PubMed ID: 20402483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverted opal fluorescent film chemosensor for the detection of explosive nitroaromatic vapors through fluorescence resonance energy transfer.
    Fang Q; Geng J; Liu B; Gao D; Li F; Wang Z; Guan G; Zhang Z
    Chemistry; 2009 Nov; 15(43):11507-14. PubMed ID: 19810058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligomer-coated carbon nanotube chemiresistive sensors for selective detection of nitroaromatic explosives.
    Zhang Y; Xu M; Bunes BR; Wu N; Gross DE; Moore JS; Zang L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7471-5. PubMed ID: 25823968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrene-functionalized ruthenium nanoparticles as effective chemosensors for nitroaromatic derivatives.
    Chen W; Zuckerman NB; Konopelski JP; Chen S
    Anal Chem; 2010 Jan; 82(2):461-5. PubMed ID: 20000846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable generation and adsorption of energetic compounds in the vapor phase at trace levels: a tool for testing and developing sensitive and selective substrates for explosive detection.
    Bonnot K; Bernhardt P; Hassler D; Baras C; Comet M; Keller V; Spitzer D
    Anal Chem; 2010 Apr; 82(8):3389-93. PubMed ID: 20345122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal Fluorescent Polymer Sensor for Highly Sensitive Detection of Nitroaromatics.
    Kumar V; Maiti B; Chini MK; De P; Satapathi S
    Sci Rep; 2019 May; 9(1):7269. PubMed ID: 31086230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent porous film modified polymer optical fiber via "click" chemistry: stable dye dispersion and trace explosive detection.
    Ma J; Lv L; Zou G; Zhang Q
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):241-9. PubMed ID: 25487515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra trace detection of explosives in air: development of a portable fluorescent detector.
    Caron T; Guillemot M; Montméat P; Veignal F; Perraut F; Prené P; Serein-Spirau F
    Talanta; 2010 Apr; 81(1-2):543-8. PubMed ID: 20188960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fundamental Study of Electrospun Pyrene-Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution.
    Sun X; Liu Y; Shaw G; Carrier A; Dey S; Zhao J; Lei Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13189-97. PubMed ID: 26030223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent Detection of 2,4-DNT and 2,4,6-TNT in Aqueous Media by Using Simple Water-Soluble Pyrene Derivatives.
    Kovalev IS; Taniya OS; Slovesnova NV; Kim GA; Santra S; Zyryanov GV; Kopchuk DS; Majee A; Charushin VN; Chupakhin ON
    Chem Asian J; 2016 Mar; 11(5):775-81. PubMed ID: 26757403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon.
    Zang J; Guo CX; Hu F; Yu L; Li CM
    Anal Chim Acta; 2011 Jan; 683(2):187-91. PubMed ID: 21167969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual detection of trace nitroaromatic explosive residue using photoluminescent metallole-containing polymers.
    Toal SJ; Sanchez JC; Dugan RE; Trogler WC
    J Forensic Sci; 2007 Jan; 52(1):79-83. PubMed ID: 17209914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of nitrobenzene, DNT, and TNT vapors by quenching of porous silicon photoluminescence.
    Content S; Trogler WC; Sailor MJ
    Chemistry; 2000 Jun; 6(12):2205-13. PubMed ID: 10926227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and Specific Aqueous-Phase Detection of Nitroaromatic Explosives with Inherent Porphyrin Recognition Sites in Metal-Organic Frameworks.
    Yang J; Wang Z; Hu K; Li Y; Feng J; Shi J; Gu J
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11956-64. PubMed ID: 25988802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of pyrene excimers in mesoporous ormosil thin films for visual detection of nitro-explosives.
    Beyazkilic P; Yildirim A; Bayindir M
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4997-5004. PubMed ID: 24635728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface molecular-imprinting engineering of novel cellulose nanofibril/conjugated polymer film sensors towards highly selective recognition and responsiveness of nitroaromatic vapors.
    Niu Q; Gao K; Lin Z; Wu W
    Chem Commun (Camb); 2013 Oct; 49(80):9137-9. PubMed ID: 23986180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly selective and sensitive fluorescent zeolitic imidazole frameworks sensor for nitroaromatic explosive detection.
    Abuzalat O; Wong D; Park SS; Kim S
    Nanoscale; 2020 Jul; 12(25):13523-13530. PubMed ID: 32555819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent detection of TNT and 4-nitrophenol by BSA Au nanoclusters.
    Yang X; Wang J; Su D; Xia Q; Chai F; Wang C; Qu F
    Dalton Trans; 2014 Jul; 43(26):10057-63. PubMed ID: 24871909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection.
    Ma Y; Li H; Peng S; Wang L
    Anal Chem; 2012 Oct; 84(19):8415-21. PubMed ID: 22946839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.