BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24317072)

  • 1. Isolation of a non-urea-producing sake yeast strain carrying a discriminable molecular marker.
    Kuribayashi T; Tamura H; Sato K; Nabekura Y; Aoki T; Anzawa Y; Katsumata K; Ohdaira S; Yamashita S; Kume K; Kaneoke M; Watanabe K; Hirata D
    Biosci Biotechnol Biochem; 2013; 77(12):2505-9. PubMed ID: 24317072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene.
    Kitamoto K; Oda K; Gomi K; Takahashi K
    Appl Environ Microbiol; 1991 Jan; 57(1):301-6. PubMed ID: 2036017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives.
    Kitagaki H; Kitamoto K
    Annu Rev Food Sci Technol; 2013; 4():215-35. PubMed ID: 23464572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of a spontaneous cerulenin-resistant sake yeast with both high ethyl caproate-producing ability and normal checkpoint integrity.
    Tamura H; Okada H; Kume K; Koyano T; Goshima T; Nakamura R; Akao T; Shimoi H; Mizunuma M; Ohya Y; Hirata D
    Biosci Biotechnol Biochem; 2015; 79(7):1191-9. PubMed ID: 25787154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae.
    Chin YW; Kang WK; Jang HW; Turner TL; Kim HJ
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1517-1525. PubMed ID: 27573438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of the fermenting yeast strain to ethyl carbamate generation in stone fruit spirits.
    Schehl B; Senn T; Lachenmeier DW; Rodicio R; Heinisch JJ
    Appl Microbiol Biotechnol; 2007 Mar; 74(4):843-50. PubMed ID: 17216464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced production of ethyl carbamate for wine fermentation by deleting CAR1 in Saccharomyces cerevisiae.
    Guo XW; Li YZ; Guo J; Wang Q; Huang SY; Chen YF; Du LP; Xiao DG
    J Ind Microbiol Biotechnol; 2016 May; 43(5):671-9. PubMed ID: 26831650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breeding of a sake yeast mutant with enhanced ethyl caproate productivity in sake brewing using rice milled at a high polishing ratio.
    Takahashi T; Ohara Y; Sueno K
    J Biosci Bioeng; 2017 Jun; 123(6):707-713. PubMed ID: 28286120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain.
    Wu D; Li X; Shen C; Lu J; Chen J; Xie G
    Int J Food Microbiol; 2014 Jun; 180():19-23. PubMed ID: 24769164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of a high malic acid-producing strains of Saccharomyces cerevisiae isolated from sake mash.
    Oba T; Suenaga H; Nakayama S; Mitsuiki S; Kitagaki H; Tashiro K; Kuhara S
    Biosci Biotechnol Biochem; 2011; 75(10):2025-9. PubMed ID: 21979083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast.
    Watanabe D; Nogami S; Ohya Y; Kanno Y; Zhou Y; Akao T; Shimoi H
    J Biosci Bioeng; 2011 Dec; 112(6):577-82. PubMed ID: 21906996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.
    Wu H; Watanabe T; Araki Y; Kitagaki H; Akao T; Takagi H; Shimoi H
    J Biosci Bioeng; 2009 Jun; 107(6):636-40. PubMed ID: 19447341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutagenesis, breeding, and characterization of sake yeast strains with low production of dimethyl trisulfide precursor.
    Makimoto J; Wakabayashi K; Inoue T; Ikeda Y; Kanda R; Isogai A; Fujii T; Nakae T
    J Biosci Bioeng; 2020 Dec; 130(6):610-615. PubMed ID: 32800812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of copper-tolerant mutants of sake yeast with defective peptide uptake.
    Yamada T; Furukawa K; Hara S; Mizoguchi H
    J Biosci Bioeng; 2005 Oct; 100(4):460-5. PubMed ID: 16310738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QTL mapping of sake brewing characteristics of yeast.
    Katou T; Namise M; Kitagaki H; Akao T; Shimoi H
    J Biosci Bioeng; 2009 Apr; 107(4):383-93. PubMed ID: 19332297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional enhancement of Sake yeast strains to minimize the production of ethyl carbamate in Sake wine.
    Dahabieh MS; Husnik JI; Van Vuuren HJ
    J Appl Microbiol; 2010 Sep; 109(3):963-73. PubMed ID: 20408912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristic features of the unique house sake yeast strain Saccharomyces cerevisiae Km67 used for industrial sake brewing.
    Takao Y; Takahashi T; Yamada T; Goshima T; Isogai A; Sueno K; Fujii T; Akao T
    J Biosci Bioeng; 2018 Nov; 126(5):617-623. PubMed ID: 29884321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MAL73, a novel regulator of maltose fermentation, is functionally impaired by single nucleotide polymorphism in sake brewing yeast.
    Ohdate T; Omura F; Hatanaka H; Zhou Y; Takagi M; Goshima T; Akao T; Ono E
    PLoS One; 2018; 13(6):e0198744. PubMed ID: 29894505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of lactic acid-tolerant Saccharomyces cerevisiae from Cameroonian alcoholic beverage.
    Kubo R; Ohta K; Funakawa S; Kitabatake N; Araki S; Izawa S
    J Biosci Bioeng; 2014 Dec; 118(6):657-60. PubMed ID: 24910259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brewing characteristics of haploid strains isolated from sake yeast Kyokai No. 7.
    Katou T; Kitagaki H; Akao T; Shimoi H
    Yeast; 2008 Nov; 25(11):799-807. PubMed ID: 19061192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.