These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 24317078)

  • 1. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem.
    Enning D; Garrelfs J
    Appl Environ Microbiol; 2014 Feb; 80(4):1226-36. PubMed ID: 24317078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust.
    Enning D; Venzlaff H; Garrelfs J; Dinh HT; Meyer V; Mayrhofer K; Hassel AW; Stratmann M; Widdel F
    Environ Microbiol; 2012 Jul; 14(7):1772-87. PubMed ID: 22616633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron corrosion by novel anaerobic microorganisms.
    Dinh HT; Kuever J; Mussmann M; Hassel AW; Stratmann M; Widdel F
    Nature; 2004 Feb; 427(6977):829-32. PubMed ID: 14985759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbially Influenced Corrosion of Stainless Steel by Acidithiobacillus ferrooxidans Supplemented with Pyrite: Importance of Thiosulfate.
    Inaba Y; Xu S; Vardner JT; West AC; Banta S
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A semi-continuous system for monitoring microbially influenced corrosion.
    Eid MM; Duncan KE; Tanner RS
    J Microbiol Methods; 2018 Jul; 150():55-60. PubMed ID: 29803719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on corrosion behavior of X80 steel under stripping coating by sulfate reducing bacteria.
    Cui YY; Qin YX; Ding QM; Gao YN
    BMC Biotechnol; 2021 Jan; 21(1):5. PubMed ID: 33422076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial extracellular electron transfer and its relevance to iron corrosion.
    Kato S
    Microb Biotechnol; 2016 Mar; 9(2):141-8. PubMed ID: 26863985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Community succession in an anaerobic long-chain paraffin-degrading consortium and impact on chemical and electrical microbially influenced iron corrosion.
    Liang R; Davidova I; Hirano SI; Duncan KE; Suflita JM
    FEMS Microbiol Ecol; 2019 Aug; 95(8):. PubMed ID: 31281924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in oil reservoir and biological control of SRB: a review.
    Gao P; Fan K
    Arch Microbiol; 2023 Apr; 205(5):162. PubMed ID: 37010699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer.
    Hellal J; Guédron S; Huguet L; Schäfer J; Laperche V; Joulian C; Lanceleur L; Burnol A; Ghestem JP; Garrido F; Battaglia-Brunet F
    J Contam Hydrol; 2015 Sep; 180():56-68. PubMed ID: 26275395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial corrosion of initial perforation on abandoned pipelines in wet soil containing sulfate-reducing bacteria.
    Liu H; Cheng YF
    Colloids Surf B Biointerfaces; 2020 Jun; 190():110899. PubMed ID: 32120127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.
    Xu D; Li Y; Gu T
    Bioelectrochemistry; 2016 Aug; 110():52-8. PubMed ID: 27071053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.
    Satoh H; Odagiri M; Ito T; Okabe S
    Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design features of offshore oil production platforms influence their susceptibility to biocorrosion.
    Duncan KE; Davidova IA; Nunn HS; Stamps BW; Stevenson BS; Souquet PJ; Suflita JM
    Appl Microbiol Biotechnol; 2017 Aug; 101(16):6517-6529. PubMed ID: 28597336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of sulphate-reducing bacteria on the performance of engineering materials.
    Javaherdashti R
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1507-17. PubMed ID: 21786108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turning the Page: Advancing Detection Platforms for Sulfate Reducing Bacteria and their Perks.
    Asif M; Aziz A; Ashraf G; Iftikhar T; Sun Y; Liu H
    Chem Rec; 2022 Jan; 22(1):e202100166. PubMed ID: 34415677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of magnesium peroxide for the inhibition of sulfate-reducing bacteria under anoxic conditions.
    Chang YJ; Chang YT; Hung CH
    J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1481-91. PubMed ID: 18712535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris.
    Li H; Xu D; Li Y; Feng H; Liu Z; Li X; Gu T; Yang K
    PLoS One; 2015; 10(8):e0136183. PubMed ID: 26308855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron.
    Bai H; Kang Y; Quan H; Han Y; Sun J; Feng Y
    J Environ Manage; 2013 Nov; 129():350-6. PubMed ID: 23981707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.