These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 24317252)

  • 21. Genome-wide MNase hypersensitivity assay unveils distinct classes of open chromatin associated with H3K27me3 and DNA methylation in Arabidopsis thaliana.
    Zhao H; Zhang W; Zhang T; Lin Y; Hu Y; Fang C; Jiang J
    Genome Biol; 2020 Feb; 21(1):24. PubMed ID: 32014062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-Wide Identification of DNase I Hypersensitive Sites in Plants.
    Wang Y; Wang K
    Curr Protoc; 2021 Jun; 1(6):e148. PubMed ID: 34101388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative evaluation of DNase-seq footprint identification strategies.
    Barozzi I; Bora P; Morelli MJ
    Front Genet; 2014; 5():278. PubMed ID: 25177346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromatin accessibility reveals insights into androgen receptor activation and transcriptional specificity.
    Tewari AK; Yardimci GG; Shibata Y; Sheffield NC; Song L; Taylor BS; Georgiev SG; Coetzee GA; Ohler U; Furey TS; Crawford GE; Febbo PG
    Genome Biol; 2012 Oct; 13(10):R88. PubMed ID: 23034120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting.
    Hesselberth JR; Chen X; Zhang Z; Sabo PJ; Sandstrom R; Reynolds AP; Thurman RE; Neph S; Kuehn MS; Noble WS; Fields S; Stamatoyannopoulos JA
    Nat Methods; 2009 Apr; 6(4):283-9. PubMed ID: 19305407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The genome shows its sensitive side.
    Raj A; McVicker G
    Nat Methods; 2014 Jan; 11(1):39-40. PubMed ID: 24378702
    [No Abstract]   [Full Text] [Related]  

  • 27. Correlation between DNase I hypersensitive site distribution and gene expression in HeLa S3 cells.
    Wang YM; Zhou P; Wang LY; Li ZH; Zhang YN; Zhang YX
    PLoS One; 2012; 7(8):e42414. PubMed ID: 22900019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-Wide Mapping of DNase I Hypersensitive Sites in Tomato.
    Li R; Cui X
    Methods Mol Biol; 2018; 1830():367-379. PubMed ID: 30043382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells.
    Wong KC; Li Y; Peng C
    Bioinformatics; 2016 Feb; 32(3):321-4. PubMed ID: 26411866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics.
    He HH; Meyer CA; Chen MW; Jordan VC; Brown M; Liu XS
    Genome Res; 2012 Jun; 22(6):1015-25. PubMed ID: 22508765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide mapping of DNase I hypersensitive sites in plants.
    Zhang W; Jiang J
    Methods Mol Biol; 2015; 1284():71-89. PubMed ID: 25757768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TRACE: transcription factor footprinting using chromatin accessibility data and DNA sequence.
    Ouyang N; Boyle AP
    Genome Res; 2020 Jul; 30(7):1040-1046. PubMed ID: 32660981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNase-seq predicts regions of rotational nucleosome stability across diverse human cell types.
    Winter DR; Song L; Mukherjee S; Furey TS; Crawford GE
    Genome Res; 2013 Jul; 23(7):1118-29. PubMed ID: 23657885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global reference mapping of human transcription factor footprints.
    Vierstra J; Lazar J; Sandstrom R; Halow J; Lee K; Bates D; Diegel M; Dunn D; Neri F; Haugen E; Rynes E; Reynolds A; Nelson J; Johnson A; Frerker M; Buckley M; Kaul R; Meuleman W; Stamatoyannopoulos JA
    Nature; 2020 Jul; 583(7818):729-736. PubMed ID: 32728250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNase-seq to Study Chromatin Accessibility in Early
    Cho JS; Blitz IL; Cho KWY
    Cold Spring Harb Protoc; 2019 Apr; 2019(4):pdb.prot098335. PubMed ID: 30131367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiplex indexing approach for the detection of DNase I hypersensitive sites in single cells.
    Gao W; Ku WL; Pan L; Perrie J; Zhao T; Hu G; Wu Y; Zhu J; Ni B; Zhao K
    Nucleic Acids Res; 2021 Jun; 49(10):e56. PubMed ID: 33693880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of transcription factor binding sites using ATAC-seq.
    Li Z; Schulz MH; Look T; Begemann M; Zenke M; Costa IG
    Genome Biol; 2019 Feb; 20(1):45. PubMed ID: 30808370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-wide mapping of DNase I hypersensitive sites in rare cell populations using single-cell DNase sequencing.
    Cooper J; Ding Y; Song J; Zhao K
    Nat Protoc; 2017 Nov; 12(11):2342-2354. PubMed ID: 29022941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays.
    Sabo PJ; Kuehn MS; Thurman R; Johnson BE; Johnson EM; Cao H; Yu M; Rosenzweig E; Goldy J; Haydock A; Weaver M; Shafer A; Lee K; Neri F; Humbert R; Singer MA; Richmond TA; Dorschner MO; McArthur M; Hawrylycz M; Green RD; Navas PA; Noble WS; Stamatoyannopoulos JA
    Nat Methods; 2006 Jul; 3(7):511-8. PubMed ID: 16791208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data.
    Piper J; Elze MC; Cauchy P; Cockerill PN; Bonifer C; Ott S
    Nucleic Acids Res; 2013 Nov; 41(21):e201. PubMed ID: 24071585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.