BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 24317491)

  • 1. Copper-transporting P-type ATPases use a unique ion-release pathway.
    Andersson M; Mattle D; Sitsel O; Klymchuk T; Nielsen AM; Møller LB; White SH; Nissen P; Gourdon P
    Nat Struct Mol Biol; 2014 Jan; 21(1):43-8. PubMed ID: 24317491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a copper-transporting PIB-type ATPase.
    Gourdon P; Liu XY; Skjørringe T; Morth JP; Møller LB; Pedersen BP; Nissen P
    Nature; 2011 Jun; 475(7354):59-64. PubMed ID: 21716286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sulfur-based transport pathway in Cu+-ATPases.
    Mattle D; Zhang L; Sitsel O; Pedersen LT; Moncelli MR; Tadini-Buoninsegni F; Gourdon P; Rees DC; Nissen P; Meloni G
    EMBO Rep; 2015 Jun; 16(6):728-40. PubMed ID: 25956886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation and Functional Role of the Orientations of the N- and P-Domains of Cu+ -Transporting ATPase along the Ion Transport Cycle.
    Meng D; Bruschweiler-Li L; Zhang F; Brüschweiler R
    Biochemistry; 2015 Aug; 54(32):5095-102. PubMed ID: 26196187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of Legionella pneumophila Cu
    Placenti MA; Roman EA; González Flecha FL; González-Lebrero RM
    Biochim Biophys Acta Biomembr; 2022 Feb; 1864(2):183822. PubMed ID: 34826402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane Anchoring and Ion-Entry Dynamics in P-type ATPase Copper Transport.
    Grønberg C; Sitsel O; Lindahl E; Gourdon P; Andersson M
    Biophys J; 2016 Dec; 111(11):2417-2429. PubMed ID: 27926843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the transmembrane metal binding site in Cu+-transporting PIB-type ATPases.
    Mandal AK; Yang Y; Kertesz TM; Argüello JM
    J Biol Chem; 2004 Dec; 279(52):54802-7. PubMed ID: 15494391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and mechanism of Zn2+-transporting P-type ATPases.
    Wang K; Sitsel O; Meloni G; Autzen HE; Andersson M; Klymchuk T; Nielsen AM; Rees DC; Nissen P; Gourdon P
    Nature; 2014 Oct; 514(7523):518-22. PubMed ID: 25132545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics and stability of the metal binding domains of the Menkes ATPase and their interaction with metallochaperone HAH1.
    Arumugam K; Crouzy S
    Biochemistry; 2012 Nov; 51(44):8885-906. PubMed ID: 23075277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial Cu(+)-ATPases: models for molecular structure-function studies.
    Argüello JM; Patel SJ; Quintana J
    Metallomics; 2016 Sep; 8(9):906-14. PubMed ID: 27465346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Structure and function of ATP7A and ATP7B proteins--Cu-transporting ATPases].
    Lenartowicz M; Krzeptowski W
    Postepy Biochem; 2010; 56(3):317-27. PubMed ID: 21117320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase.
    Sazinsky MH; Mandal AK; Argüello JM; Rosenzweig AC
    J Biol Chem; 2006 Apr; 281(16):11161-6. PubMed ID: 16495228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On allosteric modulation of P-type Cu(+)-ATPases.
    Mattle D; Sitsel O; Autzen HE; Meloni G; Gourdon P; Nissen P
    J Mol Biol; 2013 Jul; 425(13):2299-308. PubMed ID: 23500486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of ion uptake in copper-transporting P
    Salustros N; Grønberg C; Abeyrathna NS; Lyu P; Orädd F; Wang K; Andersson M; Meloni G; Gourdon P
    Nat Commun; 2022 Aug; 13(1):5121. PubMed ID: 36045128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional expression of the menkes disease protein reveals common biochemical mechanisms among the copper-transporting P-type ATPases.
    Payne AS; Gitlin JD
    J Biol Chem; 1998 Feb; 273(6):3765-70. PubMed ID: 9452509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function and regulation of the mammalian copper-transporting ATPases: insights from biochemical and cell biological approaches.
    Lutsenko S; Petris MJ
    J Membr Biol; 2003 Jan; 191(1):1-12. PubMed ID: 12532272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of Cu+ transport ATPases: interaction with CU+ chaperones and the role of transient metal-binding sites.
    Padilla-Benavides T; McCann CJ; Argüello JM
    J Biol Chem; 2013 Jan; 288(1):69-78. PubMed ID: 23184962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites.
    González-Guerrero M; Argüello JM
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminal domains of human copper-transporting adenosine triphosphatases (the Wilson's and Menkes disease proteins) bind copper selectively in vivo and in vitro with stoichiometry of one copper per metal-binding repeat.
    Lutsenko S; Petrukhin K; Cooper MJ; Gilliam CT; Kaplan JH
    J Biol Chem; 1997 Jul; 272(30):18939-44. PubMed ID: 9228074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural models of the human copper P-type ATPases ATP7A and ATP7B.
    Gourdon P; Sitsel O; Lykkegaard Karlsen J; Birk Møller L; Nissen P
    Biol Chem; 2012 Apr; 393(4):205-16. PubMed ID: 23029640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.