BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 24317504)

  • 1. Biosystematics and agronomic potential of some weedy and cultivated amaranths.
    Hauptli H; Jain SK
    Theor Appl Genet; 1978 Jul; 52(4):177-85. PubMed ID: 24317504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution and improvement of cultivated amaranths : VI. Cytogenetic relationships in grain types.
    Pal M; Khoshoo TN
    Theor Appl Genet; 1973 Jan; 43(5):242-51. PubMed ID: 24425076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allozyme variation and evolutionary relationships of grain amaranths (Amaranthus spp.).
    Hauptli H; Jain S
    Theor Appl Genet; 1984 Dec; 69(2):153-65. PubMed ID: 24253706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of Cultivated Grain Amaranth Species and Wild Relative Accessions.
    Thapa R; Edwards M; Blair MW
    Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946796
    [No Abstract]   [Full Text] [Related]  

  • 5. Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop.
    Stetter MG; Schmid KJ
    Mol Phylogenet Evol; 2017 Apr; 109():80-92. PubMed ID: 28057554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting patterns of variation in weedy traits and unique crop features in divergent populations of US weedy rice (Oryza sativa sp.) in Arkansas and California.
    Kanapeckas KL; Tseng TM; Vigueira CC; Ortiz A; Bridges WC; Burgos NR; Fischer AJ; Lawton-Rauh A
    Pest Manag Sci; 2018 Jun; 74(6):1404-1415. PubMed ID: 29205860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity in Grain Amaranths and Relatives Distinguished by Genotyping by Sequencing (GBS).
    Wu X; Blair MW
    Front Plant Sci; 2017; 8():1960. PubMed ID: 29204149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seed Shattering: A Trait of Evolutionary Importance in Plants.
    Maity A; Lamichaney A; Joshi DC; Bajwa A; Subramanian N; Walsh M; Bagavathiannan M
    Front Plant Sci; 2021; 12():657773. PubMed ID: 34220883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers.
    Xu F; Sun M
    Mol Phylogenet Evol; 2001 Dec; 21(3):372-87. PubMed ID: 11741380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cultivated and weedy rice interactions and the domestication process.
    Lawton-Rauh A; Burgos N
    Mol Ecol; 2010 Aug; 19(16):3243-5. PubMed ID: 20701682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in Reproductive Traits in
    Solís-Montero L; Aceves-Chong L; Vega-Polanco M; Vargas-Ponce O
    Front Plant Sci; 2021; 12():658406. PubMed ID: 34093615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agronomic performance of F1, F2 and F3 hybrids between weedy rice and transgenic glufosinate-resistant rice.
    Song X; Wang Z; Qiang S
    Pest Manag Sci; 2011 Aug; 67(8):921-31. PubMed ID: 21370396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malaysian weedy rice shows its true stripes: wild Oryza and elite rice cultivars shape agricultural weed evolution in Southeast Asia.
    Song BK; Chuah TS; Tam SM; Olsen KM
    Mol Ecol; 2014 Oct; 23(20):5003-17. PubMed ID: 25231087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular evolution of shattering loci in U.S. weedy rice.
    Thurber CS; Reagon M; Gross BL; Olsen KM; Jia Y; Caicedo AL
    Mol Ecol; 2010 Aug; 19(16):3271-84. PubMed ID: 20584132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Populations of weedy crop-wild hybrid beets show contrasting variation in mating system and population genetic structure.
    Arnaud JF; Fénart S; Cordellier M; Cuguen J
    Evol Appl; 2010 May; 3(3):305-18. PubMed ID: 25567926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seed-mediated gene flow promotes genetic diversity of weedy rice within populations: implications for weed management.
    He Z; Jiang X; Ratnasekera D; Grassi F; Perera U; Lu BR
    PLoS One; 2014; 9(12):e112778. PubMed ID: 25436611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. When West Meets East: The Origins and Spread of Weedy Rice Between Continental and Island Southeast Asia.
    Neik TX; Chai JY; Tan SY; Sudo MPS; Cui Y; Jayaraj J; Teo SS; Olsen KM; Song BK
    G3 (Bethesda); 2019 Sep; 9(9):2941-2950. PubMed ID: 31292156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discordant Patterns of Introgression Suggest Historical Gene Flow into Thai Weedy Rice from Domesticated and Wild Relatives.
    Wedger MJ; Pusadee T; Wongtamee A; Olsen KM
    J Hered; 2019 Aug; 110(5):601-609. PubMed ID: 31062846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic diversity and gene flow among pearl millet crop/weed complex: a case study.
    Mariac C; Robert T; Allinne C; Remigereau MS; Luxereau A; Tidjani M; Seyni O; Bezancon G; Pham JL; Sarr A
    Theor Appl Genet; 2006 Oct; 113(6):1003-14. PubMed ID: 16924479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to escape from crop-to-weed gene flow: phenological variation and isolation-by-time within weedy sunflower populations.
    Roumet M; Noilhan C; Latreille M; David J; Muller MH
    New Phytol; 2013 Jan; 197(2):642-654. PubMed ID: 23181709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.