These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2431784)

  • 1. Change of intracellular fluidity during keratinocyte differentiation measured by fluorescence polarization.
    Hachisuka H; Nomura H; Sasai Y; Shiotsuki K; Yokoyama MM
    Cell Tissue Res; 1986; 246(3):557-60. PubMed ID: 2431784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in membrane fluidity during keratinocyte differentiation measured by fluorescence polarization.
    Hachisuka H; Nomura H; Mori O; Nakano S; Okubo K; Kusuhara M; Karashima M; Tanikawa E; Higuchi M; Sasai Y
    Cell Tissue Res; 1990 Apr; 260(1):207-10. PubMed ID: 2340583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of keratinocytes by density gradient centrifugation for DNA cytofluorometry.
    Sasai Y; Hachisuka H; Mori O; Nomura H
    Histochemistry; 1984; 80(2):133-6. PubMed ID: 6201465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytofluorometric study of thiol and disulphide groups in guinea pig epidermis.
    Nomura H; Hachisuka H; Mori O; Sakamoto F; Sasai Y
    Acta Histochem; 1985; 76(2):213-8. PubMed ID: 2412386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytofluorometric study on lectin binding of isolated guinea pig keratinocytes.
    Nomura H; Hachisuka H; Higuchi M; Sasai Y
    Acta Histochem; 1989; 87(1):59-62. PubMed ID: 2513698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes of membrane fluidity and Na+,K+-ATPase activity during cellular differentiation in the guinea pig epidermis.
    Tanaka T; Hidaka T; Ogura R; Sugiyama M
    Arch Dermatol Res; 1988; 280(1):29-32. PubMed ID: 2833181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes of electron spin resonance membrane fluidity in hexadecane-induced hyperproliferative epidermis.
    Tanaka T; Ogura R; Hidaka T; Sugiyama M
    J Invest Dermatol; 1989 Nov; 93(5):682-6. PubMed ID: 2551972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, characterization, and in vitro cultivation of keratinocyte subfractions from adult NMRI mouse epidermis: epidermal target cells for phorbol esters.
    Gross M; Fürstenberger G; Marks F
    Exp Cell Res; 1987 Aug; 171(2):460-74. PubMed ID: 2442019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of newborn rat epidermal cells on discontinuous isokinetic gradients of PERCOLL.
    Brysk MM; Snider JM; Smith EB
    J Invest Dermatol; 1981 Aug; 77(2):205-9. PubMed ID: 6268711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface charge of fractionated guinea pig keratinocytes measured by free-flow cell electrophoresis.
    Hachisuka H; Okubo K; Karashima T; Kusuhara M; Nakano S; Mori O; Sasai Y
    Kurume Med J; 1992; 39(1):33-9. PubMed ID: 1619887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA polymerase activity in the n.hexadecane-induced hyperkeratotic epidermis.
    Ogura R; Kaneko N; Hidaka T
    Arch Dermatol Res; 1986; 278(5):382-5. PubMed ID: 3019256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of bronchoalveolar cells from the guinea pig on continuous density gradients of Percoll: morphology and cytochemical properties of fractionated lung macrophages.
    Dauber JH; Holian A; Rosemiller ME; Daniele RP
    J Reticuloendothel Soc; 1983 Feb; 33(2):119-26. PubMed ID: 6298412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tonofilament differentiation in human epidermis, isolation and polypeptide chain composition of keratinocyte subpopulations.
    Skerrow D; Skerrow CJ
    Exp Cell Res; 1983 Jan; 143(1):27-35. PubMed ID: 6186509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the binding and endocytosis of concanavalin A by guinea pig keratinocytes: reversible antagonistic effects of cholesterol and phospholipid-liposomes.
    Callaghan TM; Metezeau P; Gachelin H; Redziniak G; Milner Y; Goldberg ME
    J Invest Dermatol; 1990 Jan; 94(1):58-64. PubMed ID: 2295838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of epidermal cells by density centrifugation: a new technique for studies on normal and pathological differentiation.
    Fischer SM; Nelson KD; Reiners JJ; Viaje A; Pelling JC; Slaga TJ
    J Cutan Pathol; 1982 Feb; 9(1):43-9. PubMed ID: 6175674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid fluidity of human and guinea-pig epidermal cells: temperature dependence in comparison to nonepidermal cells.
    Bonnekoh B; Thiele B; Krüger GR; Mahrle G
    Arch Dermatol Res; 1987; 279(4):278-80. PubMed ID: 3674960
    [No Abstract]   [Full Text] [Related]  

  • 17. Spin labeling study on membrane fluidity of epidermal cell (cow snout epidermis).
    Tanaka T; Sakanashi T; Kaneko N; Ogura R
    J Invest Dermatol; 1986 Dec; 87(6):745-7. PubMed ID: 3023495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinate changes in gene expression which mark the spinous to granular cell transition in epidermis are regulated by protein kinase C.
    Dlugosz AA; Yuspa SH
    J Cell Biol; 1993 Jan; 120(1):217-25. PubMed ID: 7678013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of desmosomal proteins in rat keratinocytes during in vitro differentiation.
    Mochizuki R; Kamiyama M; Arai KY; Arai K; Uehara K
    J Vet Med Sci; 2002 Feb; 64(2):123-7. PubMed ID: 11913548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of bronchoalveolar cells from the guinea pig on continuous gradients of Percoll: functional properties of fractionated lung macrophages.
    Holian A; Dauber JH; Diamond MS; Daniele RP
    J Reticuloendothel Soc; 1983 Feb; 33(2):157-64. PubMed ID: 6298414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.