These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24317953)

  • 1. An assessment of auxin-promoted transport in decapitated stems and whole shoots of Phaseolus vulgaris L.
    Patrick JW
    Planta; 1979 Jan; 146(1):107-12. PubMed ID: 24317953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthate transport in stems of Phaseolus vulgaris L. treated with gibberellic acid, indole-3-acetic acid or kinetin. : Effects at the site of hormone application.
    Hayes PM; Patrick JW
    Planta; 1985 Nov; 166(3):371-9. PubMed ID: 24241520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of auxin efflux carriers in the reversible loss of polar auxin transport in the pea (Pisum sativum L.) stem.
    Morris DA; Johnson CF
    Planta; 1990 Apr; 181(1):117-24. PubMed ID: 24196683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of acropetal (14)C-photosynthate transport and radial growth by indole-3-acetic acid in Pinus sylvestris shoots.
    Little CH; Sundberg B; Ericsson A
    Tree Physiol; 1990 Jun; 6(2):177-89. PubMed ID: 14972949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applicability of the chemiosmotic polar diffusion theory to the transport of indol-3yl-acetic acid in the intact pea (Pisum sativum L.).
    Johnson CF; Morris DA
    Planta; 1989 May; 178(2):242-8. PubMed ID: 24212754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further investigations into hormone-directed transport in stems.
    Bowen MR; Wareing PF
    Planta; 1971 Jun; 99(2):120-32. PubMed ID: 24487549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hormone-mediated regulative action of the sunflower shoot apex on growth and cation level in the cotyledons: an additional manifestation of apical control.
    Saks Y; Ilan I
    Plant Physiol; 1984 Feb; 74(2):408-12. PubMed ID: 16663431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of longitudinal and cambial growth by gibberellins and indole-3-acetic acid in current-year shoots of Pinus sylvestris.
    Wang Q; Little CH; Odén PC
    Tree Physiol; 1997 Nov; 17(11):715-21. PubMed ID: 14759896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of exogenous auxin in two-branched dwarf pea seedlings (Pisum sativum L.) : Some implications for polarity and apical dominance.
    Morris DA
    Planta; 1977 Jan; 136(1):91-6. PubMed ID: 24420232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogenetic Changes in the Transport of Indol-3yl-acetic Acid into Maize Roots from the Shoot and Caryopsis.
    Martin HV; Elliott MC
    Plant Physiol; 1984 Apr; 74(4):971-4. PubMed ID: 16663544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell length, light and(14)C-labelled indol-3yl-acetic acid transport inPisum satisum L. andPhaseolus vulgaris L.
    Eliezer J; Morris DA
    Planta; 1980 Jan; 149(4):327-31. PubMed ID: 24306367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gibberellic-acid-promoted transport of assimilates in stems of Phaseolus vulgaris L. : Localized versus remote site(s) of action.
    Mulligan DR; Patrick JW
    Planta; 1979 Jan; 145(3):233-8. PubMed ID: 24317728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of top excision on the potassium accumulation and expression of potassium channel genes in tobacco.
    Dai XY; Su YR; Wei WX; Wu JS; Fan YK
    J Exp Bot; 2009; 60(1):279-89. PubMed ID: 19112172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of boron on indole-3-acetic acid transportation in intact phaseolus aureus plant].
    Jiao XY; Yang ZP; Zhao RF; Wang LZ
    Ying Yong Sheng Tai Xue Bao; 2007 Feb; 18(2):366-70. PubMed ID: 17450741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes after Decapitation in Concentrations of Indole-3-Acetic Acid and Abscisic Acid in the Larger Axillary Bud of Phaseolus vulgaris L. cv Tender Green.
    Gocal GF; Pharis RP; Yeung EC; Pearce D
    Plant Physiol; 1991 Feb; 95(2):344-50. PubMed ID: 16667989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the evolution of auxin carriers and phytotropin receptors: Transmembrane auxin transport in unicellular and multicellular Chlorophyta.
    Dibb-Fuller JE; Morris DA
    Planta; 1992 Jan; 186(2):219-26. PubMed ID: 24186661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apical correlative effects in leaf epinasty of tomato.
    Kazemi S; Kefford NP
    Plant Physiol; 1974 Oct; 54(4):512-9. PubMed ID: 16658919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: inhibition of polar auxin transport in intact plants and stem segments.
    Morris DA; Johnson CF
    Planta; 1987 Nov; 172(3):408-16. PubMed ID: 24225926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of temperature and sink activity on the transport of (14)C-labelled indol-3yl-acetic acid in the intact pea plant (Pisum sativum L.).
    Eliezer J; Morris DA
    Planta; 1979 Dec; 147(3):216-24. PubMed ID: 24311035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous and exogenous auxin in the control of root growth.
    Pilet PE; Elliott MC; Moloney MM
    Planta; 1979 Sep; 146(4):405-8. PubMed ID: 24318245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.