These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24318404)

  • 21. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump.
    Fang P; Du J; Yu S
    Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical analysis of the inner flow field of a biocentrifugal blood pump.
    Chua LP; Song G; Lim TM; Zhou T
    Artif Organs; 2006 Jun; 30(6):467-77. PubMed ID: 16734599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles.
    Song G; Chua LP; Lim TM
    Artif Organs; 2010 Feb; 34(2):98-104. PubMed ID: 19817732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.
    Masuzawa T; Ohta A; Tanaka N; Qian Y; Tsukiya T
    J Artif Organs; 2009; 12(3):150-9. PubMed ID: 19894088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impeller design for a miniaturized centrifugal blood pump.
    Takano T; Schulte-Eistrup S; Yoshikawa M; Nakata K; Kawahito S; Maeda T; Nonaka K; Linneweber J; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosé Y
    Artif Organs; 2000 Oct; 24(10):821-5. PubMed ID: 11091172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study on the Unsteady Characteristics and Radial Force of a Single-Channel Centrifugal Pump.
    Wang M; Lu J; Li Z; Gu F; Chen Z
    ACS Omega; 2023 Jan; 8(2):2291-2305. PubMed ID: 36687020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetically suspended centrifugal blood pump with a radial magnetic driver.
    Hoshi H; Katakoa K; Ohuchi K; Asama J; Shinshi T; Shimokohbe A; Takatani S
    ASAIO J; 2005; 51(1):60-4. PubMed ID: 15745136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An implantable aortic valvo-pump for destination therapy.
    Qian KX
    Cardiovasc Eng; 2006 Mar; 6(1):40-2. PubMed ID: 16900420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational flow study of the continuous flow ventricular assist device, prototype number 3 blood pump.
    Anderson JB; Wood HG; Allaire PE; Bearnson G; Khanwilkar P
    Artif Organs; 2000 May; 24(5):377-85. PubMed ID: 10848679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CFD Analysis and Optimum Design for a Centrifugal Pump Using an Effectively Artificial Intelligent Algorithm.
    Wang CN; Yang FC; Nguyen VTT; Vo NTM
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014130
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experience in reducing the hemolysis of an impeller assist heart.
    Qian KX
    ASAIO Trans; 1989; 35(1):46-53. PubMed ID: 2730808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of design methods for a centrifugal blood pump with a fluid dynamic approach: results in hemolysis tests.
    Masuzawa T; Tsukiya T; Endo S; Tatsumi E; Taenaka Y; Takano H; Yamane T; Nishida M; Asztalos B; Miyazoe Y; Ito K; Sawairi T; Konishi Y
    Artif Organs; 1999 Aug; 23(8):757-61. PubMed ID: 10463503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A two-stage rotary blood pump design with potentially lower blood trauma: a computational study.
    Thamsen B; Mevert R; Lommel M; Preikschat P; Gaebler J; Krabatsch T; Kertzscher U; Hennig E; Affeld K
    Int J Artif Organs; 2016 Jun; 39(4):178-83. PubMed ID: 27034319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low haemolysis pulsatile impeller pump: design concepts and experimental results.
    Qian KX
    J Biomed Eng; 1989 Nov; 11(6):478-81. PubMed ID: 2811347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Impeller Geometry on Lift-Off Characteristics and Rotational Attitude in a Monopivot Centrifugal Blood Pump.
    Nishida M; Nakayama K; Sakota D; Kosaka R; Maruyama O; Kawaguchi Y; Kuwana K; Yamane T
    Artif Organs; 2016 Jun; 40(6):E89-E101. PubMed ID: 27097844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical investigation on hydrodynamics and biocompatibility of a magnetically suspended axial blood pump.
    Zhu X; Zhang M; Zhang G; Liu H
    ASAIO J; 2006; 52(6):624-9. PubMed ID: 17117050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump.
    Ozturk C; Aka IB; Lazoglu I
    Int J Artif Organs; 2018 Nov; 41(11):730-737. PubMed ID: 29998774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel impeller TAH using magnetic bearings for load reduction.
    Qian KX; Ru WM; Zeng P; Yuan HY
    J Med Eng Technol; 2002; 26(5):214-6. PubMed ID: 12487713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry.
    Su B; Chua LP; Wang X
    Artif Organs; 2012 Apr; 36(4):359-67. PubMed ID: 22040356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.