BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24318678)

  • 1. Recollections.
    Frenkel AW
    Photosynth Res; 1993 Feb; 35(2):103-16. PubMed ID: 24318678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthetic phosphorylation.
    Frenkel AW
    Photosynth Res; 1995 Nov; 46(1-2):73-7. PubMed ID: 24301569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy-linked reactions in photosynthetic bacteria. II. The energy-dependent reduction of oxidized nicotinamide-adenine dinucleotide phosphate by reduced nicotinamide-adenine dinucleotide in chromatophores of Rhodospirillum rubrum.
    Keister DL; Yike NJ
    Biochemistry; 1967 Dec; 6(12):3847-57. PubMed ID: 4383839
    [No Abstract]   [Full Text] [Related]  

  • 4. Coupling of proton flow to ATP synthesis in Rhodobacter capsulatus: F(0)F(1)-ATP synthase is absent from about half of chromatophores.
    Feniouk BA; Cherepanov DA; Junge W; Mulkidjanian AY
    Biochim Biophys Acta; 2001 Nov; 1506(3):189-203. PubMed ID: 11779552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification by immobilization of the microenvironment of chromatophores of Rhodopseudomonas capsulata. The influence on light-induced ADP phosphorylation coupled to cyclic electron transport.
    Garde VL; Gellf G; Thomas D
    Eur J Biochem; 1981 May; 116(2):337-9. PubMed ID: 7250130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical potential changes, H+ translocation and phosphorylation induced by short flash excitation in Rhodopseudomonas sphaeroides chromatophores.
    Saphon S; Jackson JB; Witt HT
    Biochim Biophys Acta; 1975 Oct; 408(1):67-82. PubMed ID: 240444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and photochemical activity of chlorophyll-containing particles from Rhodospirillum rubrum.
    FRENKEL AW; HICKMAN DD
    J Biophys Biochem Cytol; 1959 Oct; 6(2):285-90. PubMed ID: 13824882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. History of concepts of the comparative biochemistry of oxygenic and anoxygenic photosyntheses.
    Gest H
    Photosynth Res; 1993 Jan; 35(1):87-96. PubMed ID: 24318623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy-linked reactions in photosynthetic bacteria. 3. Further studies on energy-linked nicotinamide-adenine dinucleotide reduction by Rhodospirillum rubrum chromatophores.
    Keister DL; Minton NJ
    Biochemistry; 1969 Jan; 8(1):167-73. PubMed ID: 4304986
    [No Abstract]   [Full Text] [Related]  

  • 10. Postillumination adenosine triphosphate synthesis in Rhodospirillum rubrum chromatophores. I. Conditions for maximal yields.
    Leiser M; Gromet-Elhanan Z
    J Biol Chem; 1975 Jan; 250(1):84-9. PubMed ID: 237896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic regeneration of ATP using bacterial chromatophores.
    Pace GW; Yang HS; Tannenbaum SR; Archer MC
    Biotechnol Bioeng; 1976 Oct; 18(10):1413-23. PubMed ID: 822897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dibromothymoquinone effect on membrane potential generation in Rhodospirillum rubrum chromatophores.
    Oleskin AV; Samuilov VD
    Membr Biochem; 1983; 5(1):77-95. PubMed ID: 6316108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension.
    Niederman RA
    Photosynth Res; 2013 Oct; 116(2-3):333-48. PubMed ID: 23708977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and possible character of a high-energy intermediate in bacterial photophosphorylation.
    Horio T; Nishikawa K; Yamashita J
    Biochem J; 1966 Jan; 98(1):321-9. PubMed ID: 5938657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-linked reactions in photosynthetic bacteria. I. Succinatelinked ATP-driven NAD reduction by Rhodospirillum rubrum chromatophores.
    Keister DL; Yike NJ
    Arch Biochem Biophys; 1967 Aug; 121(2):415-22. PubMed ID: 4293589
    [No Abstract]   [Full Text] [Related]  

  • 16. Isolation and purification of an active gamma-subunit of the F0.F1-ATP synthase from chromatophore membranes of Rhodospirillum rubrum. The role of gamma in ATP synthesis and hydrolysis as compared to proton translocation.
    Khananshvili D; Gromet-Elhanan Z
    J Biol Chem; 1982 Oct; 257(19):11377-83. PubMed ID: 6181058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosynthesis: a short history of some modern experimental approaches.
    Pennazio S
    Riv Biol; 2003; 96(1):73-86. PubMed ID: 12852175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between photosynthetic and oxidative phosphorylations in chromatophores from light-grown cells of Rhodospirillum rubrum.
    Yamashita J; Yoshimura S; Matuo Y; Horio T
    Biochim Biophys Acta; 1967 Jul; 143(1):154-72. PubMed ID: 4292784
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of water in processes of energy transduction: Ca2+-transport ATPase and inorganic pyrophosphatase.
    de Meis L
    Biochem Soc Symp; 1985; 50():97-125. PubMed ID: 2428374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible role of firmly bound ATP in the energy transduction of photosynthetic membranes.
    Lutz HU; Beyeler W; Pflugshaupt C; Bachofen R
    J Supramol Struct; 1975; 3(5-6):498-509. PubMed ID: 813067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.