These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 24319054)
1. Poly(vinylidene-trifluoroethylene)/barium titanate composite for in vivo support of bone formation. Lopes HB; Santos Tde S; de Oliveira FS; Freitas GP; de Almeida AL; Gimenes R; Rosa AL; Beloti MM J Biomater Appl; 2014 Jul; 29(1):104-12. PubMed ID: 24319054 [TBL] [Abstract][Full Text] [Related]
2. Poly(Vinylidene Fluoride-Trifluorethylene)/barium titanate membrane promotes de novo bone formation and may modulate gene expression in osteoporotic rat model. Scalize PH; Bombonato-Prado KF; de Sousa LG; Rosa AL; Beloti MM; Semprini M; Gimenes R; de Almeida AL; de Oliveira FS; Hallak Regalo SC; Siessere S J Mater Sci Mater Med; 2016 Dec; 27(12):180. PubMed ID: 27770393 [TBL] [Abstract][Full Text] [Related]
3. Response of human alveolar bone-derived cells to a novel poly(vinylidene fluoride-trifluoroethylene)/barium titanate membrane. Teixeira LN; Crippa GE; Gimenes R; Zaghete MA; de Oliveira PT; Rosa AL; Beloti MM J Mater Sci Mater Med; 2011 Jan; 22(1):151-8. PubMed ID: 21107658 [TBL] [Abstract][Full Text] [Related]
4. In vitro biocompatibility of poly(vinylidene fluoride-trifluoroethylene)/barium titanate composite using cultures of human periodontal ligament fibroblasts and keratinocytes. Teixeira LN; Crippa GE; Trabuco AC; Gimenes R; Zaghete MA; Palioto DB; de Oliveira PT; Rosa AL; Beloti MM Acta Biomater; 2010 Mar; 6(3):979-89. PubMed ID: 19703597 [TBL] [Abstract][Full Text] [Related]
5. In vitro biocompatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate. Beloti MM; de Oliveira PT; Gimenes R; Zaghete MA; Bertolini MJ; Rosa AL J Biomed Mater Res A; 2006 Nov; 79(2):282-8. PubMed ID: 16817204 [TBL] [Abstract][Full Text] [Related]
6. Participation of MicroRNA-34a and RANKL on bone repair induced by poly(vinylidene-trifluoroethylene)/barium titanate membrane. Lopes HB; Ferraz EP; Almeida AL; Florio P; Gimenes R; Rosa AL; Beloti MM J Biomater Sci Polym Ed; 2016 Sep; 27(13):1369-79. PubMed ID: 27312544 [TBL] [Abstract][Full Text] [Related]
7. Development of titanium dioxide nanowire incorporated poly(vinylidene fluoride-trifluoroethylene) scaffolds for bone tissue engineering applications. Augustine A; Augustine R; Hasan A; Raghuveeran V; Rouxel D; Kalarikkal N; Thomas S J Mater Sci Mater Med; 2019 Aug; 30(8):96. PubMed ID: 31414231 [TBL] [Abstract][Full Text] [Related]
8. Effect of stem cells combined with a polymer/ceramic membrane on osteoporotic bone repair. Almeida ALG; Freitas GP; Lopes HB; Gimenes R; Siessere S; Sousa LG; Beloti MM; Rosa AL Braz Oral Res; 2019 Sep; 33():e079. PubMed ID: 31531565 [TBL] [Abstract][Full Text] [Related]
9. Texturized P(VDF-TrFE)/BT membrane enhances bone neoformation in calvaria defects regardless of the association with photobiomodulation therapy in ovariectomized rats. Rufato FCT; de Sousa LG; Scalize PH; Gimenes R; Regalo IH; Rosa AL; Beloti MM; de Oliveira FS; Bombonato-Prado KF; Regalo SCH; Siéssere S Clin Oral Investig; 2022 Jan; 26(1):1053-1065. PubMed ID: 34370100 [TBL] [Abstract][Full Text] [Related]
10. Potential of Osteoblastic Cells Derived from Bone Marrow and Adipose Tissue Associated with a Polymer/Ceramic Composite to Repair Bone Tissue. Freitas GP; Lopes HB; Almeida ALG; Abuna RPF; Gimenes R; Souza LEB; Covas DT; Beloti MM; Rosa AL Calcif Tissue Int; 2017 Sep; 101(3):312-320. PubMed ID: 28451713 [TBL] [Abstract][Full Text] [Related]
11. Patterned Piezoelectric Scaffolds for Osteogenic Differentiation. Marques-Almeida T; Cardoso VF; Gama M; Lanceros-Mendez S; Ribeiro C Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171761 [TBL] [Abstract][Full Text] [Related]
12. P(VDF-TrFE)/BaTiO3 Nanoparticle Composite Films Mediate Piezoelectric Stimulation and Promote Differentiation of SH-SY5Y Neuroblastoma Cells. Genchi GG; Ceseracciu L; Marino A; Labardi M; Marras S; Pignatelli F; Bruschini L; Mattoli V; Ciofani G Adv Healthc Mater; 2016 Jul; 5(14):1808-20. PubMed ID: 27283784 [TBL] [Abstract][Full Text] [Related]
13. Comparison of Guided Bone Regeneration Between Surface-Modified and Pristine Titanium Membranes in a Rat Calvarial Model. Nguyen TD; Moon SH; Oh TJ; Seok JJ; Lee MH; Bae TS Int J Oral Maxillofac Implants; 2016; 31(3):581-90. PubMed ID: 27183067 [TBL] [Abstract][Full Text] [Related]
14. Biomimetic piezoelectric nanocomposite membranes synergistically enhance osteogenesis of deproteinized bovine bone grafts. Bai Y; Dai X; Yin Y; Wang J; Sun X; Liang W; Li Y; Deng X; Zhang X Int J Nanomedicine; 2019; 14():3015-3026. PubMed ID: 31118619 [No Abstract] [Full Text] [Related]
15. In vitro and in vivo evaluation of e-PTFE and alkali-cellulose membranes for guided bone regeneration. Salata LA; Hatton PV; Devlin AJ; Craig GT; Brook IM Clin Oral Implants Res; 2001 Feb; 12(1):62-8. PubMed ID: 11168272 [TBL] [Abstract][Full Text] [Related]
16. The Osteogenic Role of Barium Titanate/Polylactic Acid Piezoelectric Composite Membranes as Guiding Membranes for Bone Tissue Regeneration. Dai X; Yao X; Zhang W; Cui H; Ren Y; Deng J; Zhang X Int J Nanomedicine; 2022; 17():4339-4353. PubMed ID: 36160471 [TBL] [Abstract][Full Text] [Related]
17. Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes. van Leeuwen AC; Huddleston Slater JJ; Gielkens PF; de Jong JR; Grijpma DW; Bos RR Acta Biomater; 2012 Apr; 8(4):1422-9. PubMed ID: 22186161 [TBL] [Abstract][Full Text] [Related]
18. Surface characterization and cytocompatibility of three chitosan/polycation composite membranes for guided bone regeneration. Zheng Z; Wei Y; Wang G; Gong Y; Zhang X J Biomater Appl; 2009 Sep; 24(3):209-29. PubMed ID: 18987023 [TBL] [Abstract][Full Text] [Related]