These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24319408)

  • 1. Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments.
    Ambroise M; Levi T; Joucla S; Yvert B; Saïghi S
    Front Neurosci; 2013; 7():215. PubMed ID: 24319408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized Real-Time Biomimetic Neural Network on FPGA for Bio-hybridization.
    Khoyratee F; Grassia F; Saïghi S; Levi T
    Front Neurosci; 2019; 13():377. PubMed ID: 31068781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model.
    Yaghini Bonabi S; Asgharian H; Safari S; Nili Ahmadabadi M
    Front Neurosci; 2014; 8():379. PubMed ID: 25484854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.
    Barron-Zambrano JH; Torres-Huitzil C
    Neural Netw; 2013 Sep; 45():50-61. PubMed ID: 23631905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Hardware Implementation of Numerical Simulation Function of Hodgkin-Huxley Model Neurons Action Potential Based on Field Programmable Gate Array].
    Wang J; Lu M; Hu Y; Chen X; Pan Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Dec; 32(6):1302-9. PubMed ID: 27079105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks.
    Pani D; Meloni P; Tuveri G; Palumbo F; Massobrio P; Raffo L
    Front Neurosci; 2017; 11():90. PubMed ID: 28293163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of Spiking Central Pattern Generators for Multiple Locomotion Gaits in Hexapod Robots by Christiansen Grammar Evolution.
    Espinal A; Rostro-Gonzalez H; Carpio M; Guerra-Hernandez EI; Ornelas-Rodriguez M; Sotelo-Figueroa M
    Front Neurorobot; 2016; 10():6. PubMed ID: 27516737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.
    Xu T; Xiao N; Zhai X; Kwan Chan P; Tin C
    J Neural Eng; 2018 Feb; 15(1):016021. PubMed ID: 29115280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial cerebellum on FPGA: realistic real-time cerebellar spiking neural network model capable of real-world adaptive motor control.
    Shinji Y; Okuno H; Hirata Y
    Front Neurosci; 2024; 18():1220908. PubMed ID: 38726031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromorphic Instantiation of Spiking Half-Centered Oscillator Models for Central Pattern Generation.
    Athota A; Caccam B; Kochis R; Ray A; Cauwenberghs G; Broccard FD
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6703-6706. PubMed ID: 34892646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation.
    Zbrzeski A; Bornat Y; Hillen B; Siu R; Abbas J; Jung R; Renaud S
    Front Neurosci; 2016; 10():275. PubMed ID: 27378844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A case for spiking neural network simulation based on configurable multiple-FPGA systems.
    Yang S; Wu Q; Li R
    Cogn Neurodyn; 2011 Sep; 5(3):301-9. PubMed ID: 22942919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SNAVA-A real-time multi-FPGA multi-model spiking neural network simulation architecture.
    Sripad A; Sanchez G; Zapata M; Pirrone V; Dorta T; Cambria S; Marti A; Krishnamourthy K; Madrenas J
    Neural Netw; 2018 Jan; 97():28-45. PubMed ID: 29054036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CPGs for Limbed Locomotion-Facts and Fiction.
    Grillner S; Kozlov A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FPGA Realization of Hodgkin-Huxley Neuronal Model.
    Shama F; Haghiri S; Imani MA
    IEEE Trans Neural Syst Rehabil Eng; 2020 May; 28(5):1059-1068. PubMed ID: 32175866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cost-efficient FPGA implementation of basal ganglia and their Parkinsonian analysis.
    Yang S; Wang J; Li S; Deng B; Wei X; Yu H; Li H
    Neural Netw; 2015 Nov; 71():62-75. PubMed ID: 26318085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FPGA-Based Implementation of Stochastic Configuration Networks for Regression Prediction.
    Gao Y; Luan F; Pan J; Li X; He Y
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32731462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FPNA: interaction between FPGA and neural computation.
    Girau B
    Int J Neural Syst; 2000 Jun; 10(3):243-59. PubMed ID: 11011795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking?
    Minassian K; Hofstoetter US; Dzeladini F; Guertin PA; Ijspeert A
    Neuroscientist; 2017 Dec; 23(6):649-663. PubMed ID: 28351197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Digital Hardware Realization for Spiking Model of Cutaneous Mechanoreceptor.
    Salimi-Nezhad N; Amiri M; Falotico E; Laschi C
    Front Neurosci; 2018; 12():322. PubMed ID: 29937707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.