These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2431945)

  • 1. Effects of 5 azacytidine on DNA methylation and early development of sea urchins and ascidia.
    Maharajan P; Maharajan V; Branno M; Scarano E
    Differentiation; 1986; 32(3):200-7. PubMed ID: 2431945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct induction of DNA hypermethylation in sea urchin embryos by microinjection of 5-methyl dCTP stimulates early histone gene expression and leads to developmental arrest.
    Chen J; Maxson R; Jones PA
    Dev Biol; 1993 Jan; 155(1):75-86. PubMed ID: 8416846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA methyltransferase activity in the early stages of a sea urchin embryo. Evidence of differential control.
    Tosi L; Aniello F; Geraci G; Branno M
    FEBS Lett; 1995 Mar; 361(1):115-7. PubMed ID: 7890028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HSP90 function is required for morphogenesis in ascidian and echinoid embryos.
    Bishop CD; Bates WR; Brandhorst BP
    Dev Genes Evol; 2002 Mar; 212(2):70-80. PubMed ID: 11914938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylation of DNA in developing embryos of the sea urchin Psammechinus miliaris.
    Baur R; Wohlert H; Kröger H
    Hoppe Seylers Z Physiol Chem; 1979 Sep; 360(9):1263-9. PubMed ID: 511116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 5-Azacytidine changes gene expression and causes developmental arrest of early chick embryo.
    Zagris N; Podimatas T
    Int J Dev Biol; 1994 Dec; 38(4):741-4. PubMed ID: 7540035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric inhibition of spicule formation in sea urchin embryos with low concentrations of gadolinium ion.
    Saitoh M; Kuroda R; Muranaka Y; Uto N; Murai J; Kuroda H
    Dev Growth Differ; 2010 Dec; 52(9):735-46. PubMed ID: 21158753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different aggregation properties of sea urchin embryonic cells at different developmental stages. II. Stage specific response to fibronectin and collagen.
    Matranga V; Adragna N; Cervello M; Vittorelli ML
    Cell Biol Int Rep; 1984 Sep; 8(9):797-807. PubMed ID: 6498944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The early and late sea urchin histone H4 mRNAs respond differently to inhibitors of DNA synthesis.
    Jarvis JW; Marzluff WF
    Dev Biol; 1989 Apr; 132(2):325-30. PubMed ID: 2522406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A factor in sea urchin eggs inhibits transcription in isolated nuclei by sea urchin RNA polymerase III.
    Morris GF; Marzluff WF
    Biochemistry; 1983 Feb; 22(3):645-53. PubMed ID: 6188481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of ribosomal RNA in sea urchin embryos. V. Further evidence for an activation following the hatching blastula stage.
    Sconzo G; Giudice G
    Biochim Biophys Acta; 1971 Dec; 254(3):447-51. PubMed ID: 5137606
    [No Abstract]   [Full Text] [Related]  

  • 12. Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations.
    Roepke TA; Snyder MJ; Cherr GN
    Aquat Toxicol; 2005 Jan; 71(2):155-73. PubMed ID: 15642640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly (A)-containing polyribosomal RNA in sea urchin embryos: changes in proportion during development.
    Fromson D; Duchastel A
    Biochim Biophys Acta; 1975 Feb; 378(3):394-404. PubMed ID: 1115788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription of three actin genes and a repeated sequence in isolated nuclei of sea urchin embryos.
    Hickey RJ; Boshar MF; Crain WR
    Dev Biol; 1987 Nov; 124(1):215-27. PubMed ID: 2444480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of silver nanoparticles on Mediterranean sea urchin embryonal development is species specific and depends on moment of first exposure.
    Burić P; Jakšić Ž; Štajner L; Dutour Sikirić M; Jurašin D; Cascio C; Calzolai L; Lyons DM
    Mar Environ Res; 2015 Oct; 111():50-9. PubMed ID: 26164225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pseudopterosin A on cell division, cell cycle progression, DNA, and protein synthesis in cultured sea urchin embryos.
    Ettouati WS; Jacobs RS
    Mol Pharmacol; 1987 May; 31(5):500-5. PubMed ID: 3574294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [3H]serotonin binding to blastula, gastrula, prism, and pluteus sea urchin embryo cells.
    Brown KM; Shaver JR
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 93(2):281-5. PubMed ID: 2572382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of U1 RNA in isolated nuclei from sea urchin embryos: U1 RNA is initiated at the first nucleotide of the RNA.
    Morris GF; Marzluff WF
    Mol Cell Biol; 1985 May; 5(5):1143-50. PubMed ID: 2582239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method of microinjection: delivering monoclonal antibody 1223 into sea urchin embryos.
    Cho JW
    Mol Cells; 1999 Aug; 9(4):455-8. PubMed ID: 10515613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. dCMP-aminohydrolase activity during early sea urchin development. An example of negative enzyme control during embryogenesis.
    De Petrocellis B; Pratibha M; Maharajan V
    Exp Cell Res; 1984 May; 152(1):188-94. PubMed ID: 6201371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.