These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 24319648)

  • 1. Matrix Producing Cells in Chronic Kidney Disease: Origin, Regulation, and Activation.
    Kramann R; Dirocco DP; Maarouf OH; Humphreys BD
    Curr Pathobiol Rep; 2013 Dec; 1(4):. PubMed ID: 24319648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin of interstitial myofibroblasts in chronic kidney disease.
    Grgic I; Duffield JS; Humphreys BD
    Pediatr Nephrol; 2012 Feb; 27(2):183-93. PubMed ID: 21311912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cellular and signalling alterations conducted by TGF-β contributing to renal fibrosis.
    Vega G; Alarcón S; San Martín R
    Cytokine; 2016 Dec; 88():115-125. PubMed ID: 27599257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic disease.
    Kramann R; DiRocco DP; Humphreys BD
    J Pathol; 2013 Nov; 231(3):273-89. PubMed ID: 24006178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular mechanisms of tissue fibrosis. 3. Novel mechanisms of kidney fibrosis.
    Campanholle G; Ligresti G; Gharib SA; Duffield JS
    Am J Physiol Cell Physiol; 2013 Apr; 304(7):C591-603. PubMed ID: 23325411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Janus-Faced: Molecular Mechanisms and Versatile Nature of Renal Fibrosis.
    Arai H; Yanagita M
    Kidney360; 2020 Jul; 1(7):697-704. PubMed ID: 35372942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of genetics and epigenetics to progression of kidney fibrosis.
    Tampe B; Zeisberg M
    Nephrol Dial Transplant; 2014 Sep; 29 Suppl 4():iv72-9. PubMed ID: 23975750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myofibroblast in Kidney Fibrosis: Origin, Activation, and Regulation.
    Yuan Q; Tan RJ; Liu Y
    Adv Exp Med Biol; 2019; 1165():253-283. PubMed ID: 31399969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis.
    Sun YB; Qu X; Caruana G; Li J
    Differentiation; 2016 Sep; 92(3):102-107. PubMed ID: 27262400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal interstitial fibrosis: a critical evaluation of the origin of myofibroblasts.
    Barnes JL; Glass Ii WF
    Contrib Nephrol; 2011; 169():73-93. PubMed ID: 21252512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of fibrosis: the role of the pericyte.
    Schrimpf C; Duffield JS
    Curr Opin Nephrol Hypertens; 2011 May; 20(3):297-305. PubMed ID: 21422927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelial Activin Receptor-Like Kinase 1 (ALK1) Regulates Myofibroblast Emergence and Peritubular Capillary Stability in the Early Stages of Kidney Fibrosis.
    Martínez-Salgado C; Sánchez-Juanes F; López-Hernández FJ; Muñoz-Félix JM
    Front Pharmacol; 2022; 13():843732. PubMed ID: 35770075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial to mesenchymal transition in kidney fibrosis.
    Jacobs ME; de Vries DK; Engelse MA; Dumas SJ; Rabelink TJ
    Nephrol Dial Transplant; 2024 Apr; 39(5):752-760. PubMed ID: 37968135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1.
    Ren S; Johnson BG; Kida Y; Ip C; Davidson KC; Lin SL; Kobayashi A; Lang RA; Hadjantonakis AK; Moon RT; Duffield JS
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1440-5. PubMed ID: 23302695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases.
    Barnes JL; Gorin Y
    Kidney Int; 2011 May; 79(9):944-56. PubMed ID: 21307839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TGF-β/Smad and Renal Fibrosis.
    Ma TT; Meng XM
    Adv Exp Med Biol; 2019; 1165():347-364. PubMed ID: 31399973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel insights into pericyte-myofibroblast transition and therapeutic targets in renal fibrosis.
    Chang FC; Chou YH; Chen YT; Lin SL
    J Formos Med Assoc; 2012 Nov; 111(11):589-98. PubMed ID: 23217594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pericytes in kidney fibrosis.
    Ren S; Duffield JS
    Curr Opin Nephrol Hypertens; 2013 Jul; 22(4):471-80. PubMed ID: 23722183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia and fibrosis in chronic kidney disease: crossing at pericytes.
    Kawakami T; Mimura I; Shoji K; Tanaka T; Nangaku M
    Kidney Int Suppl (2011); 2014 Nov; 4(1):107-112. PubMed ID: 25401039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Identification of Biomarkers for Tubular Injury and Interstitial Fibrosis in Chronic Kidney Disease].
    Nakagawa S
    Yakugaku Zasshi; 2017; 137(11):1355-1360. PubMed ID: 29093371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.