BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

541 related articles for article (PubMed ID: 24320195)

  • 1. Review on design and control aspects of ankle rehabilitation robots.
    Jamwal PK; Hussain S; Xie SQ
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):93-101. PubMed ID: 24320195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State of the art in parallel ankle rehabilitation robot: a systematic review.
    Dong M; Zhou Y; Li J; Rong X; Fan W; Zhou X; Kong Y
    J Neuroeng Rehabil; 2021 Mar; 18(1):52. PubMed ID: 33743757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on the mechanical design elements of ankle rehabilitation robot.
    Khalid YM; Gouwanda D; Parasuraman S
    Proc Inst Mech Eng H; 2015 Jun; 229(6):452-63. PubMed ID: 25979442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot-assisted ankle rehabilitation: a review.
    Alvarez-Perez MG; Garcia-Murillo MA; Cervantes-Sánchez JJ
    Disabil Rehabil Assist Technol; 2020 May; 15(4):394-408. PubMed ID: 30856032
    [No Abstract]   [Full Text] [Related]  

  • 5. Robot Assisted Ankle Neuro-Rehabilitation: State of the art and Future Challenges.
    Hussain S; Jamwal PK; Vliet PV; Brown NAT
    Expert Rev Neurother; 2021 Jan; 21(1):111-121. PubMed ID: 33198522
    [No Abstract]   [Full Text] [Related]  

  • 6. State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review.
    Hussain S; Jamwal PK; Ghayesh MH
    Proc Inst Mech Eng H; 2017 Dec; 231(12):1224-1234. PubMed ID: 29065774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke.
    Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M
    Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.
    Bharadwaj K; Sugar TG; Koeneman JB; Koeneman EJ
    J Biomech Eng; 2005 Nov; 127(6):1009-13. PubMed ID: 16438241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects.
    Miao Q; Zhang M; Wang C; Li H
    J Healthc Eng; 2018; 2018():1534247. PubMed ID: 29736230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-robot-interaction control for orthoses with pneumatic soft-actuators--concept and initial trails.
    Baiden D; Ivlev O
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650353. PubMed ID: 24187172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive model-based assistive control for pneumatic direct driven soft rehabilitation robots.
    Wilkening A; Ivlev O
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650354. PubMed ID: 24187173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design strategies to improve patient motivation during robot-aided rehabilitation.
    Colombo R; Pisano F; Mazzone A; Delconte C; Micera S; Carrozza MC; Dario P; Minuco G
    J Neuroeng Rehabil; 2007 Feb; 4():3. PubMed ID: 17309790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective.
    Gassert R; Dietz V
    J Neuroeng Rehabil; 2018 Jun; 15(1):46. PubMed ID: 29866106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.
    Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent trends for practical rehabilitation robotics, current challenges and the future.
    Yakub F; Md Khudzari AZ; Mori Y
    Int J Rehabil Res; 2014 Mar; 37(1):9-21. PubMed ID: 24126254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects.
    Lo HS; Xie SQ
    Med Eng Phys; 2012 Apr; 34(3):261-8. PubMed ID: 22051085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tele-rehabilitation using in-house wearable ankle rehabilitation robot.
    Jamwal PK; Hussain S; Mir-Nasiri N; Ghayesh MH; Xie SQ
    Assist Technol; 2018; 30(1):24-33. PubMed ID: 27658061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot.
    Ai Q; Zhu C; Zuo J; Meng W; Liu Q; Xie SQ; Yang M
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29283406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shoulder mechanism design of an exoskeleton robot for stroke patient rehabilitation.
    Koo D; Chang PH; Sohn MK; Shin JH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975505. PubMed ID: 22275701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of an upper limb stroke rehabilitation robot: identification of clinical practices and design requirements through a survey of therapists.
    Lu EC; Wang RH; Hebert D; Boger J; Galea MP; Mihailidis A
    Disabil Rehabil Assist Technol; 2011; 6(5):420-31. PubMed ID: 21184626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.