These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

543 related articles for article (PubMed ID: 24320195)

  • 61. A Robot-Driven Computational Model for Estimating Passive Ankle Torque With Subject-Specific Adaptation.
    Zhang M; Meng W; Davies TC; Zhang Y; Xie SQ
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):814-21. PubMed ID: 26340767
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.
    Niu J; Yang Q; Chen G; Song R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results.
    Brewer BR; McDowell SK; Worthen-Chaudhari LC
    Top Stroke Rehabil; 2007; 14(6):22-44. PubMed ID: 18174114
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Configuration-Dependent Optimal Impedance Control of an Upper Extremity Stroke Rehabilitation Manipulandum.
    Ghannadi B; Sharif Razavian R; McPhee J
    Front Robot AI; 2018; 5():124. PubMed ID: 33501003
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience.
    Burgar CG; Lum PS; Shor PC; Machiel Van der Loos HF
    J Rehabil Res Dev; 2000; 37(6):663-73. PubMed ID: 11321002
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Using the Kinect to limit abnormal kinematics and compensation strategies during therapy with end effector robots.
    Brokaw EB; Lum PS; Cooper RA; Brewer BR
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650384. PubMed ID: 24187203
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A survey of snake-inspired robot designs.
    Hopkins JK; Spranklin BW; Gupta SK
    Bioinspir Biomim; 2009 Jun; 4(2):021001. PubMed ID: 19158415
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Robot-aided neurorehabilitation.
    Krebs HI; Hogan N; Aisen ML; Volpe BT
    IEEE Trans Rehabil Eng; 1998 Mar; 6(1):75-87. PubMed ID: 9535526
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Design and control of a pneumatic musculoskeletal biped robot.
    Zang X; Liu Y; Liu X; Zhao J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S443-54. PubMed ID: 27163303
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effectiveness of robot-assisted therapy on ankle rehabilitation--a systematic review.
    Zhang M; Davies TC; Xie S
    J Neuroeng Rehabil; 2013 Mar; 10():30. PubMed ID: 23517734
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Gamification and Control of Nitinol Based Ankle Rehabilitation Robot.
    Hau CT; Gouwanda D; Gopalai AA; Low CY; Hanapiah FA
    Biomimetics (Basel); 2021 Sep; 6(3):. PubMed ID: 34562877
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Can a Robot Bring Your Life Back? A Systematic Review for Robotics in Rehabilitation.
    Chew E; Turner DA
    Adv Exp Med Biol; 2019; 1170():1-35. PubMed ID: 32067201
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Human-robot interaction tests on a novel robot for gait assistance.
    Tagliamonte NL; Sergi F; Carpino G; Accoto D; Guglielmelli E
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650387. PubMed ID: 24187206
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Origami-based earthworm-like locomotion robots.
    Fang H; Zhang Y; Wang KW
    Bioinspir Biomim; 2017 Oct; 12(6):065003. PubMed ID: 28777743
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.
    Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P
    J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications.
    Yap HK; Lim JH; Nasrallah F; Cho Hong Goh J; Yeow CH
    J Med Eng Technol; 2016; 40(4):199-209. PubMed ID: 27007297
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Voluntary Assist-as-Needed Controller for an Ankle Power-Assist Rehabilitation Robot.
    Yang R; Shen Z; Lyu Y; Zhuang Y; Li L; Song R
    IEEE Trans Biomed Eng; 2023 Jun; 70(6):1795-1803. PubMed ID: 37015472
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Development of a New Robotic Ankle Rehabilitation Platform for Hemiplegic Patients after Stroke.
    Liu Q; Wang C; Long JJ; Sun T; Duan L; Zhang X; Zhang B; Shen Y; Shang W; Lin Z; Wang Y; Xia J; Wei J; Li W; Wu Z
    J Healthc Eng; 2018; 2018():3867243. PubMed ID: 29736231
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Design framework for a simple robotic ankle evaluation and rehabilitation device.
    Syrseloudis CE; Emiris IZ; Maganaris CN; Lilas TE
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4310-3. PubMed ID: 19163666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.