These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24320259)

  • 1. Efficient calculation of many-body induced electrostatics in molecular systems.
    McLaughlin K; Cioce CR; Pham T; Belof JL; Space B
    J Chem Phys; 2013 Nov; 139(18):184112. PubMed ID: 24320259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust and accurate method for free-energy calculation of charged molecular systems.
    Anwar J; Heyes DM
    J Chem Phys; 2005 Jun; 122(22):224117. PubMed ID: 15974661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A long-range electrostatic potential based on the Wolf method charge-neutral condition.
    Yonezawa Y
    J Chem Phys; 2012 Jun; 136(24):244103. PubMed ID: 22755561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An extension of Wolf's method for the treatment of electrostatic interactions: application to liquid water and aqueous solutions.
    Fanourgakis GS
    J Phys Chem B; 2015 Feb; 119(5):1974-85. PubMed ID: 25611255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Long-Range Electrostatics on Time-Dependent Stokes Shift Calculations.
    Furse KE; Corcelli SA
    J Chem Theory Comput; 2009 Aug; 5(8):1959-67. PubMed ID: 26613139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pairwise Alternatives to Ewald Summation for Calculating Long-Range Electrostatics in Ionic Liquids.
    McCann BW; Acevedo O
    J Chem Theory Comput; 2013 Feb; 9(2):944-50. PubMed ID: 26588737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular H2 potential for heterogeneous simulations including polarization and many-body van der Waals interactions.
    McLaughlin K; Cioce CR; Belof JL; Space B
    J Chem Phys; 2012 May; 136(19):194302. PubMed ID: 22612090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple "time step" Monte Carlo simulations: application to charged systems with Ewald summation.
    Bernacki K; Hetenyi B; Berne BJ
    J Chem Phys; 2004 Jul; 121(1):44-50. PubMed ID: 15260521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic charges derived from electrostatic potentials for molecular and periodic systems.
    Chen DL; Stern AC; Space B; Johnson JK
    J Phys Chem A; 2010 Sep; 114(37):10225-33. PubMed ID: 20795694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real space electrostatics for multipoles. II. Comparisons with the Ewald sum.
    Lamichhane M; Newman KE; Gezelter JD
    J Chem Phys; 2014 Oct; 141(13):134110. PubMed ID: 25296787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulations of non-neutral slab systems with long-range electrostatic interactions in two-dimensional periodic boundary conditions.
    Ballenegger V; Arnold A; Cerdà JJ
    J Chem Phys; 2009 Sep; 131(9):094107. PubMed ID: 19739849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins.
    Lu X; Cui Q
    J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extension and evaluation of the multilevel summation method for fast long-range electrostatics calculations.
    Moore SG; Crozier PS
    J Chem Phys; 2014 Jun; 140(23):234112. PubMed ID: 24952528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free Energy Landscapes of Alanine Dipeptide in Explicit Water Reproduced by the Force-Switching Wolf Method.
    Yonezawa Y; Fukuda I; Kamiya N; Shimoyama H; Nakamura H
    J Chem Theory Comput; 2011 May; 7(5):1484-93. PubMed ID: 26610139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water.
    Fukuda I; Kamiya N; Yonezawa Y; Nakamura H
    J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing simple yet accurate potentials for describing the solvation of HCl/water clusters in bulk helium and nanodroplets.
    Boese AD; Forbert H; Masia M; Tekin A; Marx D; Jansen G
    Phys Chem Chem Phys; 2011 Aug; 13(32):14550-64. PubMed ID: 21687854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragment-based quantum mechanical methods for periodic systems with Ewald summation and mean image charge convention for long-range electrostatic interactions.
    Zhang P; Truhlar DG; Gao J
    Phys Chem Chem Phys; 2012 Jun; 14(21):7821-9. PubMed ID: 22552612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Screening Functions as Cutoff-Based Alternatives to Ewald Summation in Molecular Dynamics Simulations Using Polarizable Force Fields.
    Vatamanu J; Borodin O; Bedrov D
    J Chem Theory Comput; 2018 Feb; 14(2):768-783. PubMed ID: 29294281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ewald Summation for Molecular Simulations.
    Wells BA; Chaffee AL
    J Chem Theory Comput; 2015 Aug; 11(8):3684-95. PubMed ID: 26574452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.