These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24320269)

  • 1. Full dimensional potential energy surface for the ground state of H4(+) system based on triatomic-in-molecules formalism.
    Sanz-Sanz C; Roncero O; Paniagua M; Aguado A
    J Chem Phys; 2013 Nov; 139(18):184302. PubMed ID: 24320269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab-initio-based global double many-body expansion potential energy surface for the electronic ground state of the ammonia molecule.
    Li YQ; Varandas AJ
    J Phys Chem A; 2010 Jun; 114(24):6669-80. PubMed ID: 20507132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new accurate and full dimensional potential energy surface of H5(+) based on a triatomics-in-molecules analytic functional form.
    Aguado A; Barragán P; Prosmiti R; Delgado-Barrio G; Villarreal P; Roncero O
    J Chem Phys; 2010 Jul; 133(2):024306. PubMed ID: 20632754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the C(3P) + OH(X2Pi) --> CO(a3Pi) + H(2S) reaction: fully global ab initio potential energy surfaces of the 12A'' and 14A'' excited states and non adiabatic couplings.
    Zanchet A; Bussery-Honvault B; Jorfi M; Honvault P
    Phys Chem Chem Phys; 2009 Aug; 11(29):6182-91. PubMed ID: 19606328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical reactions of the low-lying excited states of formaldehyde: T1/S0 intersystem crossings, characteristics of the S1 and T1 potential energy surfaces, and a global T1 potential energy surface.
    Zhang P; Maeda S; Morokuma K; Braams BJ
    J Chem Phys; 2009 Mar; 130(11):114304. PubMed ID: 19317536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics investigations of ozone on an ab initio potential energy surface with the utilization of pattern-recognition neural network for accurate determination of product formation.
    Le HM; Dinh TS; Le HV
    J Phys Chem A; 2011 Oct; 115(40):10862-70. PubMed ID: 21888438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio-based global double many-body expansion potential energy surface for the first 2A" electronic state of NO2.
    Mota VC; Caridade PJ; Varandas AJ
    J Phys Chem A; 2012 Mar; 116(11):3023-34. PubMed ID: 22332971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate ab initio based DMBE potential energy surface for the ground electronic state of N2H2.
    Poveda LA; Biczysko M; Varandas AJ
    J Chem Phys; 2009 Jul; 131(4):044309. PubMed ID: 19655869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global potential energy surfaces for the Al+(1S) + H2 system.
    Salazar MR
    J Chem Phys; 2004 Oct; 121(14):6874-83. PubMed ID: 15473746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio adiabatic and quasidiabatic potential energy surfaces of lowest four electronic states of the H+ + O2 system.
    Xavier FG; Kumar S
    J Chem Phys; 2010 Oct; 133(16):164304. PubMed ID: 21033785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization.
    Han H; Li A; Guo H
    J Chem Phys; 2014 Dec; 141(24):244312. PubMed ID: 25554156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New double many-body expansion potential energy surface for ground-state HCN from a multiproperty fit to accurate ab initio energies and rovibrational calculations.
    Varandas AJ; Rodrigues SP
    J Phys Chem A; 2006 Jan; 110(2):485-93. PubMed ID: 16405320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio potential energy surfaces, total absorption cross sections, and product quantum state distributions for the low-lying electronic states of N(2)O.
    Daud MN; Balint-Kurti GG; Brown A
    J Chem Phys; 2005 Feb; 122(5):54305. PubMed ID: 15740320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical investigation of excited states of C(3).
    Terentyev A; Scholz R; Schreiber M; Seifert G
    J Chem Phys; 2004 Sep; 121(12):5767-76. PubMed ID: 15367001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A global ab initio potential energy surface for the X2A' ground state of the Si + OH → SiO + H reaction.
    Dayou F; Duflot D; Rivero-Santamaría A; Monnerville M
    J Chem Phys; 2013 Nov; 139(20):204305. PubMed ID: 24289352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity.
    Castro-Palacios JC; Rubayo-Soneira J; Ishii K; Yamashita K
    J Chem Phys; 2007 Apr; 126(13):134315. PubMed ID: 17430040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between LiH molecule and Li atom from state-of-the-art electronic structure calculations.
    Skomorowski W; Pawłowski F; Korona T; Moszynski R; Żuchowski PS; Hutson JM
    J Chem Phys; 2011 Mar; 134(11):114109. PubMed ID: 21428609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HN2(2A') electronic manifold. II. Ab initio based double-sheeted DMBE potential energy surface via a global diabatization angle.
    Mota VC; Varandas AJ
    J Phys Chem A; 2008 Apr; 112(16):3768-86. PubMed ID: 18380492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio-based double many-body expansion potential energy surface for the first excited triplet state of the ammonia molecule.
    Li YQ; Song YZ; Song P; Li YZ; Ding Y; Sun MT; Ma FC
    J Chem Phys; 2012 May; 136(19):194705. PubMed ID: 22612107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global analytical potential energy surface for the electronic ground state of NH3 from high level ab initio calculations.
    Marquardt R; Sagui K; Zheng J; Thiel W; Luckhaus D; Yurchenko S; Mariotti F; Quack M
    J Phys Chem A; 2013 Aug; 117(32):7502-22. PubMed ID: 23688044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.