These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24320280)

  • 1. Analytical equation of state with three-body forces: application to noble gases.
    del Río F; Díaz-Herrera E; Guzmán O; Moreno-Razo JA; Ramos JE
    J Chem Phys; 2013 Nov; 139(18):184503. PubMed ID: 24320280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of three-body interactions on Ar adsorption on graphitized carbon black.
    Ustinov EA
    J Chem Phys; 2010 May; 132(19):194703. PubMed ID: 20499980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H3(+) as a trap for noble gases-3: multiple trapping of neon, argon, and krypton in X(n)H3(+) (n = 1-3).
    Pauzat F; Ellinger Y; Pilmé J; Mousis O
    J Chem Phys; 2009 May; 130(17):174313. PubMed ID: 19425782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the thermophysical properties of pure neon, pure argon, and the binary mixtures neon-argon and argon-krypton by Monte Carlo simulation using ab initio potentials.
    Nasrabad AE; Laghaei R; Deiters UK
    J Chem Phys; 2004 Oct; 121(13):6423-34. PubMed ID: 15446941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized Mie potentials for phase equilibria: Application to noble gases and their mixtures with n-alkanes.
    Mick JR; Soroush Barhaghi M; Jackman B; Rushaidat K; Schwiebert L; Potoff JJ
    J Chem Phys; 2015 Sep; 143(11):114504. PubMed ID: 26395716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing Noble Gas-Water Interactions via Monte Carlo Simulations.
    Warr O; Ballentine CJ; Mu J; Masters A
    J Phys Chem B; 2015 Nov; 119(45):14486-95. PubMed ID: 26452070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic properties of krypton from Monte Carlo simulations using ab initio potentials.
    Ströker P; Hellmann R; Meier K
    J Chem Phys; 2022 Sep; 157(11):114504. PubMed ID: 36137797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The multiscale coarse-graining method: assessing its accuracy and introducing density dependent coarse-grain potentials.
    Izvekov S; Chung PW; Rice BM
    J Chem Phys; 2010 Aug; 133(6):064109. PubMed ID: 20707563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models.
    Paschek D
    J Chem Phys; 2004 Apr; 120(14):6674-90. PubMed ID: 15267560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dispersion forces on the structure and thermodynamics of fluid krypton.
    Jakse N; Bomont JM; Charpentier I; Bretonnet JL
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3671-8. PubMed ID: 11088867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio interatomic potentials and the thermodynamic properties of fluids.
    Vlasiuk M; Sadus RJ
    J Chem Phys; 2017 Jul; 147(2):024505. PubMed ID: 28711063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme.
    Quillin ML; Breyer WA; Griswold IJ; Matthews BW
    J Mol Biol; 2000 Sep; 302(4):955-77. PubMed ID: 10993735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Dynamics Simulation of Argon, Krypton, and Xenon Using Two-Body and Three-Body Intermolecular Potentials.
    Goharshadi EK; Abbaspour M
    J Chem Theory Comput; 2006 Jul; 2(4):920-6. PubMed ID: 26633051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAFT-γ force field for the simulation of molecular fluids: 2. Coarse-grained models of greenhouse gases, refrigerants, and long alkanes.
    Avendaño C; Lafitte T; Adjiman CS; Galindo A; Müller EA; Jackson G
    J Phys Chem B; 2013 Mar; 117(9):2717-33. PubMed ID: 23311931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can an ab initio three-body virial equation describe the mercury gas phase?
    Wiebke J; Wormit M; Hellmann R; Pahl E; Schwerdtfeger P
    J Phys Chem B; 2014 Mar; 118(12):3392-400. PubMed ID: 24547987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-body interactions and solid-liquid phase equilibria: application of a molecular dynamics algorithm.
    Wang L; Sadus RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031203. PubMed ID: 17025614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth and Mars.
    Owen T; Bar-Nun A; Kleinfeld I
    Nature; 1992 Jul; 358(6381):43-6. PubMed ID: 11536499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: the case of carbon dioxide.
    Mognetti BM; Yelash L; Virnau P; Paul W; Binder K; Müller M; MacDowell LG
    J Chem Phys; 2008 Mar; 128(10):104501. PubMed ID: 18345900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic properties of model solids with short-ranged potentials from Monte Carlo simulations and perturbation theory.
    Díez A; Largo J; Solana JR
    J Phys Chem B; 2007 Aug; 111(34):10194-201. PubMed ID: 17683133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roller compaction process development and scale up using Johanson model calibrated with instrumented roll data.
    Nesarikar VV; Patel C; Early W; Vatsaraj N; Sprockel O; Jerzweski R
    Int J Pharm; 2012 Oct; 436(1-2):486-507. PubMed ID: 22721851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.