These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 24320361)

  • 1. An improved fragment-based quantum mechanical method for calculation of electrostatic solvation energy of proteins.
    Jia X; Wang X; Liu J; Zhang JZ; Mei Y; He X
    J Chem Phys; 2013 Dec; 139(21):214104. PubMed ID: 24320361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new quantum method for electrostatic solvation energy of protein.
    Mei Y; Ji C; Zhang JZ
    J Chem Phys; 2006 Sep; 125(9):094906. PubMed ID: 16965118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatically embedded generalized molecular fractionation with conjugate caps method for full quantum mechanical calculation of protein energy.
    Wang X; Liu J; Zhang JZ; He X
    J Phys Chem A; 2013 Aug; 117(32):7149-61. PubMed ID: 23452268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full QM Calculation of RNA Energy Using Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method.
    Jin X; Zhang JZ; He X
    J Phys Chem A; 2017 Mar; 121(12):2503-2514. PubMed ID: 28264557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fragment-based quantum mechanical calculation of protein-protein binding affinities.
    Wang Y; Liu J; Li J; He X
    J Comput Chem; 2018 Aug; 39(21):1617-1628. PubMed ID: 29707784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantum mechanical computational method for modeling electrostatic and solvation effects of protein.
    Wang X; Li Y; Gao Y; Yang Z; Lu C; Zhu T
    Sci Rep; 2018 Apr; 8(1):5475. PubMed ID: 29615707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The generalized molecular fractionation with conjugate caps/molecular mechanics method for direct calculation of protein energy.
    He X; Zhang JZ
    J Chem Phys; 2006 May; 124(18):184703. PubMed ID: 16709127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.
    Liu J; Zhu T; Wang X; He X; Zhang JZ
    J Chem Theory Comput; 2015 Dec; 11(12):5897-905. PubMed ID: 26642993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragment quantum chemical approach to geometry optimization and vibrational spectrum calculation of proteins.
    Liu J; Zhang JZ; He X
    Phys Chem Chem Phys; 2016 Jan; 18(3):1864-75. PubMed ID: 26686896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragment-Based Quantum Mechanical Calculation of Excited-State Properties of Fluorescent RNAs.
    Shen C; Wang X; He X
    Front Chem; 2021; 9():801062. PubMed ID: 35004616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy.
    Wang Z; Han Y; Li J; He X
    J Phys Chem B; 2020 Apr; 124(15):3027-3035. PubMed ID: 32208716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate Prediction of Absorption Spectral Shifts of Proteorhodopsin Using a Fragment-Based Quantum Mechanical Method.
    Shen C; Jin X; Glover WJ; He X
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fragment Quantum Mechanical Method for Metalloproteins.
    Xu M; He X; Zhu T; Zhang JZH
    J Chem Theory Comput; 2019 Feb; 15(2):1430-1439. PubMed ID: 30620584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragment-based quantum mechanical approach to biomolecules, molecular clusters, molecular crystals and liquids.
    Liu J; He X
    Phys Chem Chem Phys; 2020 Jun; 22(22):12341-12367. PubMed ID: 32459230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized born model with a simple smoothing function.
    Im W; Lee MS; Brooks CL
    J Comput Chem; 2003 Nov; 24(14):1691-702. PubMed ID: 12964188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.