These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 24320371)

  • 61. Nuclear electric quadrupole moment of gold.
    Belpassi L; Tarantelli F; Sgamellotti A; Quiney HM; van Stralen JN; Visscher L
    J Chem Phys; 2007 Feb; 126(6):064314. PubMed ID: 17313222
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Zero-Field Splitting Parameters from Four-Component Relativistic Methods.
    Reynolds RD; Shiozaki T
    J Chem Theory Comput; 2019 Mar; 15(3):1560-1571. PubMed ID: 30689942
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Communication: Relativistic Fock-space coupled cluster study of small building blocks of larger uranium complexes.
    Tecmer P; Gomes AS; Knecht S; Visscher L
    J Chem Phys; 2014 Jul; 141(4):041107. PubMed ID: 25084873
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dirac-Coulomb-Breit Molecular Mean-Field Exact-Two-Component Relativistic Equation-of-Motion Coupled-Cluster Theory.
    Zhang T; Banerjee S; Koulias LN; Valeev EF; DePrince AE; Li X
    J Phys Chem A; 2024 May; 128(17):3408-3418. PubMed ID: 38651293
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Analytical energy gradient based on spin-free infinite-order Douglas-Kroll-Hess method with local unitary transformation.
    Nakajima Y; Seino J; Nakai H
    J Chem Phys; 2013 Dec; 139(24):244107. PubMed ID: 24387357
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Two-component relativistic methods for the heaviest elements.
    Kedziera D; Barysz M
    J Chem Phys; 2004 Oct; 121(14):6719-27. PubMed ID: 15473727
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Parity nonconservation contribution to the nuclear magnetic resonance shielding constants of chiral molecules: a four-component relativistic study.
    Bast R; Schwerdtfeger P; Saue T
    J Chem Phys; 2006 Aug; 125(6):64504. PubMed ID: 16942295
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Self-consistent treatment of spin-orbit interactions with efficient Hartree-Fock and density functional methods.
    Armbruster MK; Weigend F; van Wüllen C; Klopper W
    Phys Chem Chem Phys; 2008 Apr; 10(13):1748-56. PubMed ID: 18350180
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fully relativistic coupled cluster and DFT study of electric field gradients at Hg in 199Hg compounds.
    Arcisauskaite V; Knecht S; Sauer SP; Hemmingsen L
    Phys Chem Chem Phys; 2012 Feb; 14(8):2651-7. PubMed ID: 22258427
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Second-Order Perturbation Theory with Spin-Symmetry-Projected Hartree-Fock.
    Tsuchimochi T; Ten-No SL
    J Chem Theory Comput; 2019 Dec; 15(12):6688-6702. PubMed ID: 31661264
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Local unitary transformation method for large-scale two-component relativistic calculations: case for a one-electron Dirac Hamiltonian.
    Seino J; Nakai H
    J Chem Phys; 2012 Jun; 136(24):244102. PubMed ID: 22755560
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The electronic spectrum of AgCl2: ab initio benchmark versus density-functional theory calculations on the lowest ligand-field states including spin-orbit effects.
    Ramírez-Solís A; Poteau R; Daudey JP
    J Chem Phys; 2006 Jan; 124(3):034307. PubMed ID: 16438583
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Decoupling of the Dirac equation correct to the third order for the magnetic perturbation.
    Ootani Y; Maeda H; Fukui H
    J Chem Phys; 2007 Aug; 127(8):084117. PubMed ID: 17764239
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Internally Contracted Multireference Coupled Cluster Calculations with a Spin-Free Dirac-Coulomb Hamiltonian: Application to the Monoxides of Titanium, Zirconium, and Hafnium.
    Lipparini F; Kirsch T; Köhn A; Gauss J
    J Chem Theory Comput; 2017 Jul; 13(7):3171-3184. PubMed ID: 28609618
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Excitation Energies from Real-Time Propagation of the Four-Component Dirac-Kohn-Sham Equation.
    Repisky M; Konecny L; Kadek M; Komorovsky S; Malkin OL; Malkin VG; Ruud K
    J Chem Theory Comput; 2015 Mar; 11(3):980-91. PubMed ID: 26579752
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ab initio study of a Bi3+ impurity in Cs2NaYCl6 and Y2O3: comparison of perturbative and variational electron correlation methods.
    Réal F; Vallet V; Flament JP; Schamps J
    J Chem Phys; 2006 Nov; 125(17):174709. PubMed ID: 17100463
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A second-quantization framework for the unified treatment of relativistic and nonrelativistic molecular perturbations by response theory.
    Helgaker T; Hennum AC; Klopper W
    J Chem Phys; 2006 Jul; 125(2):24102. PubMed ID: 16848572
    [TBL] [Abstract][Full Text] [Related]  

  • 78. State Interaction for Relativistic Four-Component Methods: Choose the Right Zeroth-Order Hamiltonian for Late-Row Elements.
    Hoyer CE; Liao C; Shumilov KD; Zhang T; Li X
    J Chem Theory Comput; 2024 Sep; ():. PubMed ID: 39257190
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals.
    Verma P; Perera A; Morales JA
    J Chem Phys; 2013 Nov; 139(17):174103. PubMed ID: 24206283
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Relativistic effects in HgHe and HgXe CCSD(T) ground state potential curves. Low-density viscosity simulations of Hg:Xe mixture.
    Bučinský L; Biskupič S; Ilčin M; Lukeš V; Laurinc V
    J Comput Chem; 2011 Jan; 32(2):356-67. PubMed ID: 20662077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.