BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 24320408)

  • 1. A super-resolution ultrasound method for brain vascular mapping.
    O'Reilly MA; Hynynen K
    Med Phys; 2013 Nov; 40(11):110701. PubMed ID: 24320408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional super resolution ultrasound imaging with a multi-frequency hemispherical phased array.
    Deng L; Lea-Banks H; Jones RM; O'Reilly MA; Hynynen K
    Med Phys; 2023 Dec; 50(12):7478-7497. PubMed ID: 37702919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-Resolution Imaging Through the Human Skull.
    Soulioti DE; Espindola D; Dayton PA; Pinton GF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jan; 67(1):25-36. PubMed ID: 31494546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study.
    Jones RM; O'Reilly MA; Hynynen K
    Phys Med Biol; 2013 Jul; 58(14):4981-5005. PubMed ID: 23807573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel transcranial ultrasound imaging method with diverging wave transmission and deep learning approach.
    Du B; Wang J; Zheng H; Xiao C; Fang S; Lu M; Mao R
    Comput Methods Programs Biomed; 2020 Apr; 186():105308. PubMed ID: 31978869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections.
    Jones RM; O'Reilly MA; Hynynen K
    Med Phys; 2015 Jul; 42(7):4385-400. PubMed ID: 26133635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative sub-resolution blood velocity estimation using ultrasound localization microscopy ex-vivo and in-vivo.
    EspĂ­ndola D; DeRuiter RM; Santibanez F; Dayton PA; Pinton G
    Biomed Phys Eng Express; 2020 Apr; 6(3):035019. PubMed ID: 33438664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Multifocus Beamforming for Contrast-Enhanced-Super-Resolution Ultrasound Imaging in Deep Tissue.
    Espindola D; Lin F; Soulioti DE; Dayton PA; Pinton GF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2255-2263. PubMed ID: 30136938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resolution in vivo micro-CT with flat panel detector based on amorphous silicon.
    Yang X; Meng Y; Luo Q; Gong H
    J Xray Sci Technol; 2010; 18(4):381-92. PubMed ID: 21045275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flexible annular-array imaging platform for micro-ultrasound.
    Qiu W; Yu Y; Chabok HR; Liu C; Tsang FK; Zhou Q; Shung KK; Zheng H; Sun L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):178-86. PubMed ID: 23287923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria.
    Miller GW; Eames M; Snell J; Aubry JF
    Med Phys; 2015 May; 42(5):2223-33. PubMed ID: 25979016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Ultrasonic-Adaptive Beamforming Method and Its Application for Trans-skull Imaging of Certain Types of Head Injuries; Part I: Transmission Mode.
    Shapoori K; Sadler J; Wydra A; Malyarenko EV; Sinclair AN; Maev RG
    IEEE Trans Biomed Eng; 2015 May; 62(5):1253-64. PubMed ID: 25423646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of image homogenisation on simulated transcranial ultrasound propagation.
    Robertson J; Urban J; Stitzel J; Treeby BE
    Phys Med Biol; 2018 Jul; 63(14):145014. PubMed ID: 29897047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition.
    Granton PV; Pollmann SI; Ford NL; Drangova M; Holdsworth DW
    Med Phys; 2008 Nov; 35(11):5030-42. PubMed ID: 19070237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Implementation of a Transmit/Receive Ultrasound Phased Array for Brain Applications.
    Liu HL; Tsai CH; Jan CK; Chang HY; Huang SM; Li ML; Qiu W; Zheng H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1756-1767. PubMed ID: 30010555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy.
    Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G
    Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Construction of a Low-Frequency Ultrasound Acquisition Device for 2-D Brain Imaging Using Full-Waveform Inversion.
    Cudeiro-Blanco J; Cueto C; Bates O; Strong G; Robins T; Toulemonde M; Warner M; Tang MX; Agudo OC; Guasch L
    Ultrasound Med Biol; 2022 Oct; 48(10):1995-2008. PubMed ID: 35902276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral image reconstruction for transcranial ultrasound measurement.
    Clement GT
    Phys Med Biol; 2005 Dec; 50(23):5557-72. PubMed ID: 16306652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device.
    Crake C; Brinker ST; Coviello CM; Livingstone MS; McDannold NJ
    Phys Med Biol; 2018 Mar; 63(6):065008. PubMed ID: 29459494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Transcranial Plane-Wave Imaging With Learned Speed-of-Sound Maps.
    Yang Y; Duan H; Zheng Y
    IEEE Trans Med Imaging; 2024 Jun; 43(6):2191-2201. PubMed ID: 38271172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.