BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

959 related articles for article (PubMed ID: 24320443)

  • 1. Development of novel imaging probe for optical/acoustic radiation imaging (OARI).
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2013 Nov; 40(11):111910. PubMed ID: 24320443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.
    Manickam K; Machireddy RR; Seshadri S
    Ultrasonics; 2014 Feb; 54(2):621-31. PubMed ID: 24083832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic radiation force contrast in MRI: detection of calcifications in tissue-mimicking phantoms.
    Mende J; Wild J; Ulucay D; Radicke M; Kofahl AL; Weber B; Krieg R; Maier K
    Med Phys; 2010 Dec; 37(12):6347-56. PubMed ID: 21302792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyvinyl chloride as a multimodal tissue-mimicking material with tuned mechanical and medical imaging properties.
    Li W; Belmont B; Greve JM; Manders AB; Downey BC; Zhang X; Xu Z; Guo D; Shih A
    Med Phys; 2016 Oct; 43(10):5577. PubMed ID: 27782725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic radiation force optical coherence elastography for evaluating mechanical properties of soft condensed matters and its biological applications.
    Liu HC; Kijanka P; Urban MW
    J Biophotonics; 2020 Mar; 13(3):e201960134. PubMed ID: 31872545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite-element method model of soft tissue response to impulsive acoustic radiation force.
    Palmeri ML; Sharma AC; Bouchard RR; Nightingale RW; Nightingale KR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Oct; 52(10):1699-712. PubMed ID: 16382621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography.
    Li R; Elson DS; Dunsby C; Eckersley R; Tang MX
    Opt Express; 2011 Apr; 19(8):7299-311. PubMed ID: 21503041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustomotive optical coherence elastography for measuring material mechanical properties.
    Liang X; Orescanin M; Toohey KS; Insana MF; Boppart SA
    Opt Lett; 2009 Oct; 34(19):2894-6. PubMed ID: 19794759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bubble-based acoustic radiation force elasticity imaging.
    Erpelding TN; Hollman KW; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jun; 52(6):971-9. PubMed ID: 16118978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics.
    Spirou GM; Oraevsky AA; Vitkin IA; Whelan WM
    Phys Med Biol; 2005 Jul; 50(14):N141-53. PubMed ID: 16177502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of contrast in images generated with transient acoustic radiation force.
    Nightingale K; Palmeri M; Trahey G
    Ultrasound Med Biol; 2006 Jan; 32(1):61-72. PubMed ID: 16364798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing acoustic attenuation of homogeneous media using focused impulsive acoustic radiation force.
    Palmeri ML; Frinkley KD; Oldenburg KG; Nightingale KR
    Ultrason Imaging; 2006 Apr; 28(2):114-28. PubMed ID: 17094691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative breast elastography from B-mode images.
    Rabin C; Benech N
    Med Phys; 2019 Jul; 46(7):3001-3012. PubMed ID: 30972759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental studies of the thermal effects associated with radiation force imaging of soft tissue.
    Palmeri ML; Frinkley KD; Nightingale KR
    Ultrason Imaging; 2004 Apr; 26(2):100-14. PubMed ID: 15344414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and characterization of a vitreous mimicking material for radiation force imaging.
    Negron LA; Viola F; Black EP; Toth CA; Walker WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Nov; 49(11):1543-51. PubMed ID: 12484477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method of imaging viscoelastic parameters with acoustic radiation force.
    Walker WF; Fernandez FJ; Negron LA
    Phys Med Biol; 2000 Jun; 45(6):1437-47. PubMed ID: 10870702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copolymer-in-oil phantom materials for elastography.
    Oudry J; Bastard C; Miette V; Willinger R; Sandrin L
    Ultrasound Med Biol; 2009 Jul; 35(7):1185-97. PubMed ID: 19427100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase-resolved acoustic radiation force optical coherence elastography.
    Qi W; Chen R; Chou L; Liu G; Zhang J; Zhou Q; Chen Z
    J Biomed Opt; 2012 Nov; 17(11):110505. PubMed ID: 23123971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source.
    Song S; Le NM; Huang Z; Shen T; Wang RK
    Opt Lett; 2015 Nov; 40(21):5007-10. PubMed ID: 26512505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.